Магнитное поле кругового тока центре витка. Магнитное поле оси кругового тока

Магнитное поле в центре кругового проводника с током.

dl

R dB, B

Легко понять, что все элементы тока создают в центре кругового тока магнитное поле одинакового направления. Поскольку все элементы проводника перпендикулярны радиус-вектору, из-за чего sinα = 1, и находятся от центра на одном и том же расстоянии R , то из уравнения 3.3.6 получаем следующее выражение

B = μ 0 μI/2R . (3.3.7)

2. Магнитное поле прямого тока бесконечной длины. Пусть ток течет сверху вниз. Выберем на нем несколько элементов с током и найдем их вклады в суммарную магнитную индукцию в точке, отстоящей от проводника на расстоянии R . Каждый элемент даст свой вектор dB , направленный перпендикулярно плоскости листа «к нам», также будет направлении и суммарный вектор В . При переходе от одного элемента к другому, которые располагаются на разной высоте проводника, будет изменяться угол α в пределах от 0 до π. Интегрирование даст следующее уравнение

B = (μ 0 μ/4π)2I/R . (3.3.8)

Как мы говорили, магнитное поле ориентирует определенным образом рамку с током. Это происходит потому, что поле оказывает силовое воздействие на каждый элемент рамки. И поскольку токи на противоположных сторонах рамки, параллельных ее оси, текут в противоположных направлениях, то и силы, действующие на них, оказываются разнонаправленными, вследствие чего и возникает вращающий момент. Ампер установил, что сила dF , которая действует со стороны поля на элемент проводника dl , прямо пропорциональна силе тока I в проводнике и векторному произведению элемента длиной dl на магнитную индукцию В :

dF = I [dl , B ]. (3.3.9)

Выражение 3.3.9 называют законом Ампера . Направление вектора силы, которая называется силой Ампера , определяют по правилу левой руки: если ладонь руки расположить так, чтобы в нее входил вектор В , а четыре вытянутых пальца направить вдоль тока в проводнике, то отогнутый большой палец укажет направление вектора силы. Модуль силы Ампера вычисляется по формуле

dF = IBdlsinα , (3.3.10)

где α – угол между векторами dl и B .

Пользуясь законом Ампера, можно определить силу взаимодействия двух токов. Представим себе два бесконечных прямолинейных тока I 1 и I 2 , текущих перпендикулярно плоскости рис. 3.3.4 в сторону наблюдателя, расстояние между которыми равно R . Понятно, что каждый проводник создает в пространстве вокруг себя магнитное поле, которое по закону Ампера действует на другой проводник, находящийся в этом поле. Выберем на втором проводнике с током I 2 элемент dl и рассчитаем силу dF 1 , с которой магнитное поле проводника с током I 1 действует на этот элемент. Линии магнитной индукции поля, которое создает проводник с током I 1 , представляют собой концентрические окружности (рис. 3.3.4).

В 1

dF 2 dF 1

B 2

Вектор В 1 лежит в плоскости рисунка и направлен вверх (это определяется по правилу правого винта), а его модуль

B 1 = (μ 0 μ/4π)2I 1 /R . (3.3.11)

Сила dF 1 , с которой поле первого тока действует на элемент второго тока, определяется по правилу левой руки, она направлена в сторону первого тока. Поскольку угол между элементом тока I 2 и вектором В 1 прямой, для модуля силы с учетом 3.3.11 получаем

dF 1 = I 2 B 1 dl = (μ 0 μ/4π)2I 1 I 2 dl/R . (3.3.12)

Легко показать, рассуждая аналогичным образом, что сила dF 2 , с которой магнитное поле второго тока действует на такой же элемент первого тока

Магнетизм

Характеристики магнитного поля (напряженность, индукция). Силовые линии, напряженность и магнитная индукция прямого тока, в центре кругового тока.

ИНДУКЦИЯ МАГНИТНОГО ПОЛЯ

Магнитная индукция - векторная величина: в каждой точке поля вектор магнитной индукции направлен по касательной к магнитным силовым линиям.

Наличие магнитного поля обнаруживается по силовому воздействию на внесенные в него проводники с током или постоянные магниты. Название «магнитное поле» связывают с ориентацией магнитной стрелки под действием поля, создаваемого током. Это явление было впервые обнаружено датским физиком Х. Эрстедом (1777-1851).

При исследовании магнитного поля были установлены два факта :

1. Магнитное поле действует только на движущиеся заряды;

2. Движущиеся заряды, в свою очередь создают магнитное поле.

Таким образом, мы видим, что магнитное поле существенно отличается от электростатического поля, которое действует как на движущиеся, так и на покоящиеся заряды.

Магнитное поле – силовое поле, действующее на движущиеся электрические заряды и на тела, обладающие магнитным моментом.

Любое магнитное поле обладает энергией, которая проявляет себя при взаимодействии с другими телами. Под влиянием магнитных сил движущиеся частички меняют направление своего потока. Магнитное поле появляется лишь вокруг тех электрических зарядов, которые находятся в движении. Всякое изменение электрического поля влечет за собой появление магнитных полей.

Обратное утверждение также верно: изменение магнитного поля - предпосылка к возникновению электрического. Такое тесное взаимодействие привело к созданию теории электромагнитных сил, с помощью которых и сегодня успешно объясняются различные физические явления.

Напряжённость магни́тного по́ля - векторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M . Обычно, обозначается символом Н .

Магнитное поле прямого и кругового токов.

Магнитное поле прямого тока, т е тока текущего по прямому проводу бесконечной длины

Магнитное поле элемента тока ,dl – элемент длины провода

Проинтегрировав в этих пределах последнее выражение получим магнитное поле равное:

Магнитное поле прямого тока

от всех элементов тока будет образовываться конус векторов , результирующий вектор направлен вверх по осиZ. Сложим проекции векторов на осьZ, тогда каждая проекция имеет вид:

Угол между и радиус векторомr равен .

Интегрируя по dl и учитывая , получим

- магнитное поле на оси кругового витка


Линии напряженности магнитного поля

Силовые линии магнитного поля – окружности. Линиями магнитного поля линии, проведенные так, что касательные к ним в каждой точке указывают направление поля в этой точке. линии поля чертятся так, чтобы их густота, т. е. число линий, проходящих через единицу площади, давала модуль магнитной индукции магнитного поля. Таким образом, мы будем получать «магнитные карты», способ построения и употребления которых аналогичен «электрическим картам» Главное отличие магнитного поля то, что линии его всегда оказываются замкнутыми. построение линий магнитного поля

Правило буравчика. Наглядное представление о характере магнитного поля, возникающего вокруг какого-либо проводника, по которому идет электрический ток, дают картины линий магнитного поля, получаемые так, как это было описано в § 122.

На рис. 214 и 217 изображены такие картины линий, полученные с помощью железных опилок для поля длинного прямолинейного проводника и для поля кругового витка с током. Рассматривая внимательно эти рисунки, мы прежде всего обращаем внимание на то, что линии магнитного поля имеют, вид замкнутых линий. Это свойство их является, общим и очень важным. Какова бы ни была форма проводников, по которым идет ток, линии создаваемого им магнитного поля всегда замкнуты сами на себя, т. е. не имеют ни начала, ни конца. В этом существенное отличие магнитного поля от электрического, линии которого, как мы видели в § 18, всегда начинаются на одних зарядах и кончаются на других. Мы видели, например, что линии электрического поля заканчиваются на поверхности металлического тела, которая оказывается заряженной, и внутрь металла электрическое поле не проникает. Наблюдение же над магнитным полем показывает, наоборот, что линии его никогда не оканчиваются на какой-нибудь поверхности. Когда магнитное поле создается постоянными магнитами, то не так легко проследить, что и в этом случае магнитное поле не оканчивается на поверхности магнитов, а проникает внутрь их, ибо мы не можем использовать железные опилки для наблюдения того, что делается внутри железа. Однако и в этих случаях тщательное исследование показывает, что магнитное поле проходит сквозь железо, и линии его замыкаются сами на себя, т. е. являются замкнутыми.

Рис. 217. Картина линий магнитного поля кругового витка с током

Это важное различие между электрическими и магнитными полями связано с тем, что в природе существуют электрические заряды и не существует магнитных. Поэтому линии электрического поля идут от заряда к заряду, у магнитного же поля нет ни начала ни конца, и линии его имеют замкнутый характер.

Если в опытах, дающих картины магнитного поля тока, заменить опилки маленькими магнитными стрелками, то северные концы их укажут направление линий поля, т. е. направление поля (§ 122). Рис. 218 показывает, что при изменении направления тока изменяется и направление магнитного поля. Взаимную связь между направлением тока и направлением поля, им создаваемого, легко запомнить при помощи правила буравчика (рис. 219).

Рис. 218. Связь между направлением тока в прямолинейном проводнике и направлением линий магнитного поля, создаваемого этим током: а) ток направлен сверху вниз; б) ток направлен снизу вверх

Рис. 219. К правилу буравчика

Если ввинчивать буравчик (правый винт) так, чтобы он шел по направлению тока, то направление вращения его ручки укажет направление поля (направление линий поля).

В такой форме это правило особенно удобно для установления направления поля вокруг длинных прямолинейных проводников. В случае кольцевого проводника то же правило применимо к каждому участку его. Еще удобнее для кольцевых проводников правило буравчика сформулировать так:

Если ввинчивать буравчик так, чтобы он шел по направлению поля (вдоль линий поля), то направление вращения его ручки укажет направление тока.

Нетрудно видеть, что обе формулировки правила буравчика совершенно равноценны и их можно одинаково применять к определению связи между направлением тока и направлением магнитной индукции поля при любой форме проводников.

124.1. Укажите, какой из полюсов магнитной стрелки на рис. 73 северный и какой южный.

124.2. К вершинам и проволочного параллелограмма (рис. 220) подведены провода от источника тока. Какова магнитная индукция поля в центре параллелограмма ? Как будет направлена магнитная индукция в точке , если ветвь параллелограмма сделать из медной проволоки, а ветвь – из алюминиевой проволоки того же сечения?

Рис. 220. К упражнению 124.2

124.3. Два длинных прямолинейных проводника и , не лежащих в одной плоскости, перпендикулярны друг к другу (рис. 221). Точка лежит посередине кратчайшего расстояния между этими прямыми – отрезка . Токи в проводниках и равны и имеют указанное на рисунке направление. Найдите графически направление вектора в точке . Укажите, в какой плоскости лежит этот вектор. Какой угол образует он с плоскостью, проходящей через и ?

Рис. 221. К упражнению 124.3

124.4. Выполните то же построение, что в задаче 124.3, переменив на обратное: а) направление тока в проводнике ; б) направление тока в проводнике ; в) направление тока в обоих проводниках.

124.5. По двум круговым виткам – вертикальному и горизонтальному идут токи одной и той же силы (рис. 222). Направления их указаны на рисунке стрелками. Найдите графически направление вектора в общем центре витков . Под каким углом будет наклонен этот вектор к плоскости каждого из круговых витков? Выполните то же построение, изменив направление тока на обратное сначала в вертикальном витке, затем в горизонтальном и, наконец, в обоих.

Рис. 222. К упражнению 124.5

Измерения магнитной индукции в разных точках поля вокруг проводника, по которому идет ток, показывают, что магнитная индукция в каждой точке всегда пропорциональна силе тока в проводнике. Но при данной силе тока магнитная индукция в различных точках поля различна и чрезвычайно сложно зависит от размеров и формы проводника, по которому проходит ток. Мы ограничимся одним важным случаем, когда эти зависимости сравнительно просты. Это – магнитное поле внутри соленоида.

Вначале решим более общую задачу нахождения магнитной индукции на оси витка с током. Для этого сделаем рисунок 3.8, на котором изобразим элемент тока и вектор магнитной индукции , который он создает на оси кругового контура в некоторой точке .

Рис. 3.8 Определение магнитной индукции

на оси кругового витка с током

Вектор магнитной индукции , создаваемый бесконечно малым элементом контура может быть определен с помощью закона Био-Савара-Лапласа (3.10).

Как следует из правил векторного произведения, магнитная индукция будет перпендикулярна плоскости, в которой лежат вектора и , поэтому модуль вектора будет равен

.

Для нахождения полной магнитной индукции от всего контура необходимо векторно сложить от всех элементов контура, т. е. фактически сосчитать интеграл по длине кольца

Данный интеграл можно упростить, если представить в виде суммы двух составляющих и

При этом в силу симметрии , поэтому результирующий вектор магнитной индукции будет лежать на оси . Следовательно, для нахождения модуля вектора нужно сложить проекции всех векторов , каждая из которых равна

.

Учитывая, что и , получим для интеграла следующее выражение

Нетрудно заметить, что вычисление получившегося интеграла даст длину контура, т. е. . В итоге суммарная магнитная индукция, создаваемая круговым контуром на оси в точке , равна

. (3.19)

Используя магнитный момент контура, формулу (3.19) можно переписать следующим образом

.

Теперь отметим, что полученное в общем виде решение (3.19) позволяет проанализировать предельный случай, когда точка помещена в центре витка. В этом случае и решение для магнитной индукции поля в центре кольца с током примет вид

Результирующий вектор магнитной индукции (3.19) направлен вдоль оси тока, а его направление связано с направлением тока правилом правого винта (рис. 3.9).

Рис. 3.9 Определение магнитной индукции

в центре кругового витка с током

Индукция магнитного поля в центре дуги окружности

Данная задача может быть решена как частный случай рассмотренной в предыдущем пункте задачи. В этом случае интеграл в формуле (3.18) следует брать не по всей длине окружности, а только по ее дуге l . А также учесть то, что индукция ищется в центре дуги, поэтому . В результате получим

, (3.21)

где – длина дуги; – радиус дуги.

5 Вектор индукции магнитного поля движущегося в вакууме точечного заряда (без вывода формулы)

,

где – электрический заряд; – постоянная нерелятивистская скорость; – радиус-вектор, проведенный от заряда к точке наблюдения.

Силы Ампера и Лоренца

Опыты по отклонению рамки с током в магнитном поле показывают, что на всякий проводник с током, помещенный в магнитное поле, действует механическая сила, называемая силой Ампера .

Закон Ампера определяет силу, действующую на проводник с током, помещенный в магнитное поле:

; , (3.22)

где – сила тока; – элемент длины провода (вектор совпадает по направлению с током ); – длина проводника. Сила Ампера перпендикулярна направлению тока и направлению вектора магнитной индукции.

Если прямолинейный проводник длиной находится в однородном поле, то модуль силы Ампера определяется выражением (рис. 3.10):

Сила Ампера всегда направлена перпендикулярно плоскости, содержащей векторы и , а ее направление как результат векторного произведения определяется правилом правого винта: если смотреть вдоль вектора , то поворот от к по кратчайшему пути должен происходить по часовой стрелке.

Рис. 3.10 Правило левой руки и правило буравчика для силы Ампера

С другой стороны, для определения направления силы Ампера можно также применить мнемоническоеправило левой руки (рис. 3.10): нужно поместить ладонь так, чтобы силовые линии магнитной индукции входили в нее, вытянутые пальцы показывали направление тока, тогда отогнутый большой палец укажет направление силы Ампера.

Исходя из формулы (3.22), найдем выражение для силы взаимодействия двух бесконечно длинных, прямых, параллельных друг другу проводников, по которым текут токи I 1 и I 2 (рис. 3.11) (опыт Ампера). Расстояние между проводами равно a.

Определим силу Ампера dF 21 , действующую со стороны магнитного поля первого тока I 1 на элемент l 2 dl второго тока.

Величина магнитной индукции этого поля B 1 в точке расположения элемента второго проводника с током равна

Рис. 3.11 Опыт Ампера по определению силы взаимодействия

двух прямолинейных токов

Тогда с учетом (3.22) получим

. (3.24)

Рассуждая точно так же, можно показать, что сила Ампера, действующая со стороны магнитного поля, создаваемого вторым проводником с током, на элемент первого проводника I 1 dl , равна

,

т. e. dF 12 = dF 21 . Таким образом, мы вывели формулу (3.1), которая была получена Ампером экспериментальным путем.

На рис. 3.11 показано направление сил Ампера. В случае, когда токи направлены в одну и ту же сторону, то это ‑ силы притяжения, а в случае токов разного направления ‑ силы отталкивания.

Из формулы (3.24), можно получить силу Ампера, действующую на единицу длины проводника

. (3.25)

Таким образом, сила взаимодействия двух параллельных прямых проводников с токами прямо пропорциональна произведению величин токов и обратно пропорциональна расстоянию между ними .

Закон Ампера утверждает, что на элемент с током, помещенный в магнитное поле, действует сила. Но всякий ток есть перемещение заряженных частиц. Естественно предположить, что силы, действующие на проводник с током в магнитном поле, обусловлены силами, действующими на отдельные движущиеся заряды. Этот вывод подтверждается рядом опытов (например, электронный пучок в магнитном поле отклоняется).

Найдем выражение для силы, действующей на заряд, движущийся в магнитном поле, исходя из закона Ампера. Для этого в формулу, определяющую элементарную силу Ампера

подставим выражение для силы электрического тока

,

где I – сила тока, протекающего через проводник; Q – величина полного заряда протекшего за время t ; q – величина заряда одной частицы; N – общее число заряженных частиц, прошедших через проводник объемом V , длиной l и сечением S; n – число частиц в единице объема (концентрация); v – скорость частицы.

В результате получим:

. (3.26)

Направление вектора совпадаёт с направлением скорости v , поэтому их можно поменять местами.

. (3.27)

Эта сила действует на все движущиеся заряды в проводнике длиной и сечением S , число таких зарядов:

Следовательно, сила, действующая на один заряд, будет равна:

. (3.28)

Формула (3.28) определяет силу Лоренца , величина которой

где a - угол между векторами скорости частицы и магнитной индукции.

В экспериментальной физике часто встречается ситуация, когда заряженная частица движется одновременно и в магнитном и электрическом поле. В этом случае рассматривают полную силу Лоренца в виде

,

где – электрический заряд; – напряженность электрического поля; – скорость частицы; – индукция магнитного поля.

Только в магнитном поле на движущуюся заряженную частицу действует магнитная составляющая силы Лоренца (рис. 3.12)

Рис. 3.12 Сила Лоренца

Магнитная составляющая силы Лоренца перпендикулярна вектору скорости и вектору магнитной индукции. Она не изменяет величины скорости, а изменяет только ее направление, следовательно, работы не совершает.

Взаимная ориентация трех векторов ‑ , и , входящих в (3.30), показана на рис. 313 для положительно заряженной частицы.

Рис. 3.13 Сила Лоренца, действующая на положительный заряд

Как видно из рис. 3.13, если частица влетает в магнитное поле под углом к силовым линиям , то она равномерно движется в магнитном поле по окружности радиусом и периодом обращения:

где – масса частицы.

Отношение магнитного момента к механическому L (моменту импульса) заряженной частицы, движущейся по круговой орбите,

где ‑ заряд частицы; т ‑ масса частицы.

Рассмотрим общий случай движения заряженной частицы в однородном магнитном поле, когда ее скорость направлена под произвольным углом a к вектору магнитной индукции (рис. 3.14). Если заряженная частица влетает в однородное магнитное поле под углом , то она движется по винтовой линии.

Разложим вектор скорости на составляющие v || (параллельную вектору ) и v ^ (перпендикулярную вектору ):

Наличие v ^ приводит к тому, что на частицу будет действовать сила Лоренца и она будет двигаться по окружности радиусом R в плоскости перпендикулярной вектору :

.

Период такого движения (время одного витка частицы по окружности) равен

.

Рис. 3.14 Движение по винтовой линии заряженной частицы

в магнитном поле

За счет наличия v || частица будет двигаться равномерно вдоль , так как на v || магнитное поле не действует.

Таким образом, частица участвует одновременно в двух движениях. Результирующая траектория движения представляет собой винтовую линию, ось которой совпадает с направлением индукции магнитного поля. Расстояние h между соседними витками называется шагом винтовой линии и равно:

.

Действие магнитного поля на движущийся заряд находит большое практическое применение, в частности, в работе электронно-лучевой трубки, где используется явление отклонения заряженных частиц электрическим и магнитным полями, а также в работе масс-спектрографов, позволяющих определить удельный заряд частиц (q/m ) и ускорителей заряженных частиц (циклотронов).

Рассмотрим один такой пример, назыаемый «магнитной бутылкой» (рис. 3.15). Пусть неоднородное магнитное поле создано двумя витками с токами, протекающими в одном направлении. Сгущение линий индукции в какой-либо пространнственной области означает большее значение величины магнитной индукции в этой области. Индукция магнитного поля вблизи витков с током больше, чем в пространстве между ними. По этой причине радиус винтовой линии траектории частицы, обратно пропорциональный модулю индукции, меньше вблизи витков, чем в пространстве между ними. После того, как частица, двигаясь вправо по винтовой линии, пройдет среднюю точку, сила Лоренца, действующая на чатицу, приобретает компоненту , тормозящую ее движение вправо. В определенный момент эта компонента силы останавливает движение частицы в этом направлении и отталкивает ее влево к витку 1. При приближении заряженной частицы к витку 1 она также тормозится и начинает циркулировать между витками, оказавшись в магнитной ловушке, или между «магнитными зеркалами». Магнитные ловушки используются для удержания в определенной области пространства высокотемпературной плазмы ( К) при управляемом термоядерном синтезе.

Рис. 3.15 Магнитная «бутылка»

Закономерностями движения заряженных частиц в магнитном поле можно объяснить особенности движения космических лучей вблизи Земли. Космические лучи – это потоки заряженных частиц большой энергии. При приближении к поверхности Земли эти частицы начинают испытывать действие магнитного поля Земли. Те из них, которые направляются к магнитным полюсам, будут двигаться почти вдоль линий земного магнитного поля и навиваться на них. Заряженные частицы, подлетающие к Земле вблизи экватора, направлены почти перпендикулярно к линиям магнитного поля, их траектория будет искривляться. и лишь самые быстрые из них достигнут поверхности Земли (рис. 3.16).

Рис. 3.16 Образование Полярного сияния

Поэтому интенсивность космических лучей доходящих до Земли вблизи экватора, заметно меньше, чем вблизи полюсов. С этим связан тот факт что, Полярное сияние наблюдается главным образом в приполярных областях Земли.

Эффект Холла

В 1880г. американский физик Холл провел следующий опыт: он пропускал постоянный электрический ток I через пластинку из золота и измерял разность потенциалов между противолежащими точками A и C на верхней и нижней гранях (рис. 3.17).

Цель работы : изучить свойства магнитного поля, ознакомиться с понятием магнитной индукции. Определить индукцию магнитного поля на оси кругового тока.

Теоретическое введение. Магнитное поле. Существование в природе магнитного поля проявляется в многочисленных явлениях, простейшими из которых являются взаимодействие движущихся зарядов (токов), тока и постоянного магнита, двух постоянных магнитов. Магнитное поле векторное . Это означает, что для его количественного описания в каждой точке пространства необходимо задать вектор магнитной индукции. Иногда эту величину называют просто магнитной индукцией . Направление вектора магнитной индукции совпадает с направлением магнитной стрелки, находящейся в рассматриваемой точке пространства и свободной от других воздействий.

Так как магнитное поле является силовым, то его изображают с помощью линий магнитной индукции – линий, касательные к которым в каждой точке совпадают с направлением вектора магнитной индукции в этих точках поля. Принято через единичную площадку, перпендикулярную , проводить количество линий магнитной индукции, равное величине магнитной индукции. Таким образом, густота линий соответствует величине В . Опыты показывают, что в природе отсутствуют магнитные заряды. Следствием этого является то, что линии магнитной индукции замкнуты. Магнитное поле называется однородным, если векторы индукции во всех точках этого поля одинаковы, то есть, равны по модулю и имеют одинаковые направления.

Для магнитного поля справедлив принцип суперпозиции : магнитная индукция результирующего поля, создаваемого несколькими токами или движущимися зарядами, равна векторной сумме магнитных индукций полей, создаваемых каждым током или движущимся зарядом.

В однородном магнитном поле на прямолинейный проводник действует сила Ампера :

где – вектор, равный по модулю длине проводникаl и совпадающий с направлением тока I в этом проводнике.

Направление силы Ампера определяется правилом правого винта (векторы , и образуют правовинтовую систему): если винт с правой резьбой расположить перпендикулярно к плоскости, образуемой векторами и , и вращать его от к по наименьшему углу, то поступательное движение винта укажет направление силы .В скалярном виде соотношение (1) можно записать следующим образом:

F = I×l ×B ×sin a или (2).

Из последнего соотношения вытекает физический смысл магнитной индукции : магнитная индукция однородного поля численно равна силе, действующей на проводник с током 1 А, длиной 1 м, расположенный перпендикулярно направлению поля.

Единицей измерения магнитной индукции в СИ является Тесла (Тл) : .


Магнитное поле кругового тока. Электрический ток не только взаимодействуют с магнитным полем, но и создает его. Опыт показывает, что в вакууме элемент тока создает в точке пространства магнитное поле с индукцией

(3) ,

где – коэффициент пропорциональности, m 0 =4p×10 -7 Гн/м – магнитная постоянная, – вектор, численно равный длине элемента проводника и совпадающий по направлению с элементарным током, – радиус-вектор, проведенный от элемента проводника в рассматриваемую точку поля, r – модуль радиуса-вектора. Соотношение (3) было экспериментально установлено Био и Саваром, проанализировано Лапласом и поэтому называется законом Био-Савара-Лапласа . Согласно правилу правого винта, вектор магнитной индукции в рассматриваемой точке оказывается перпендикулярным элементу тока и радиус-вектору .

На основе закона Био-Савара-Лапласа и принципа суперпозиции проводится расчет магнитных полей электрических токов, текущих в проводниках произвольной конфигурации, путем интегрирования по всей длине проводника. Например, магнитная индукция магнитного поля в центре кругового витка радиусом R , по которому течет ток I , равна:

Линии магнитной индукции кругового и прямого токов показаны на рисунке 1. На оси кругового тока линия магнитной индукции является прямой. Направление магнитной индукции связано с направлением тока в контуре правилом правого винта . В применении к круговому току его можно сформулировать так: если винт с правой резьбой вращать по направлению кругового тока, то поступательное движение винта укажет направление линий магнитной индукции, касательные к которым в каждой точке совпадают с вектором магнитной индукции.