Что такое поступательная точка. Поступательное движение: определение, формулы, теорема

Поступательным называется такое движение твердого тела, при котором любая прямая, неизменно связанная с этим телом, остается параллельной своему начальному положению.

Теорема. При поступательном движении твердого тела все его точки описывают одинаковые траектории и в каждый данный момент имеют равные по модулю и направлению скорости и ускорения.

Доказательство. Проведем через две точки и, поступательно движущегося тела отрезок
и рассмотрим движение этого отрезка в положении
. При этом точкаописывает траекторию
, а точка– траекторию
(рис. 56).

Учитывая, что отрезок
перемещается параллельно самому себе, и длина его не меняется, можно установить, что траектории точекибудут одинаковы. Значит, первая часть теоремы доказана. Будем определять положение точекивекторным способом относительно неподвижного начала координат. При этом эти радиусы – вектора находятся в зависимости
. Так как. ни длина, ни направление отрезка
не меняется при движении тела, то вектор

. Переходим к определению скоростей по зависимости (24):

, получаем
.

Переходим к определению ускорений по зависимости (26):

, получаем
.

Из доказанной теоремы следует, что поступательное движение тела будет вполне определено, если известно движение только одной какой- нибудь точки. Поэтому изучение поступательного движения твердого тела сводится к изучению движения одной его точки, т.е. к задаче кинематики точки.

Тема 11. Вращательное движение твердого тела

Вращательным называется такое движение твердого тела, при котором две его точки остаются неподвижными за все время движения. При этом прямая, проходящая через эти две неподвижные точки, называется осью вращения .

Каждая точка тела, не лежащая на оси вращения, описывает при таком движении окружность, плоскость которой перпендикулярна к оси вращения, и центр ее лежит на этой оси.

Проводим через ось вращения неподвижную плоскость I и подвижную плоскость II, неизменно связанную с телом и вращающуюся вместе с ним (рис. 57). Положение плоскости II, а соответственно и всего тела, по отношению к плоскости I в пространстве, вполне определятся углом . При вращении тела вокруг осиэтот угол является непрерывной и однозначной функцией времени. Следовательно, зная закон изменения этого угла с течением времени, мы сможем определить положение тела в пространстве:

- закон вращательного движения тела . (43)

При этом будем полагать, что угол отсчитывается от неподвижной плоскости в направлении обратном движению часовой стрелки, если смотреть с положительного конца оси. Так как положение тела, вращающегося вокруг неподвижной оси, определяется одним параметром, то говорят, что такое тело имеет одну степень свободы.

Угловая скорость

Изменение угла поворота тела с течением времени называется угловой скоростью тела и обозначается
(омега):

.(44)

Угловая скорость так же, как и линейная скорость, есть величина векторная, и этот вектор строят на оси вращения тела. Он направляется вдоль оси вращения в ту сторону, чтобы, смотря с его конца на его начало, видеть вращение тела против хода часовой стрелки (рис. 58). Модуль этого вектора определяется зависимостью (44). Точку приложенияна оси можно выбирать произвольно, так как вектор можно переносить вдоль линии его действия. Если обозначить орт-вектор оси вращения через, то получим векторное выражение угловой скорости:

. (45)

Угловое ускорение

Быстрота изменения угловой скорости тела с течением времени называется угловым ускорением тела и обозначается (эпсилон):

. (46)

Угловое ускорение есть величина векторная, и этот вектор строят на оси вращения тела. Он направляется вдоль оси вращения в ту сторону, чтобы, смотря с его конца на его начало, видеть направление вращение эпсилон против хода часовой стрелки (рис. 58). Модуль этого вектора определяется зависимостью (46). Точку приложенияна оси можно выбирать произвольно, так как вектор можно переносить вдоль линии его действия.

Если обозначить орт-вектор оси вращения через , то получим векторное выражение углового ускорения:

. (47)

Если угловые скорость и ускорения одного знака, то тело вращается ускоренно , а если разного – замедленно . Пример замедленного вращения показан на рис. 58.

Рассмотрим частные случаи вращательного движения.

1. Равномерное вращение:

,
.

,
,
,

,
. (48)

2. Равнопеременное вращение:

.

,
,
,
,
,
,
,
,


,
,
.(49)

Связь линейных и угловых параметров

Рассмотрим движение произвольной точки
вращающегося тела. При этом траектория движения точки будет окружность, радиуса
, расположенная в плоскости перпендикулярной оси вращения (рис. 59,а ).

Допустим, что в момент времени точка находится в положении
. Предположим, что тело вращается в положительном направлении, т.е. в направлении возрастания угла . В момент времени
точка займет положение
. Обозначим дугу
. Следовательно, за промежуток времени
точка прошла путь
. Ее средняя скорость , а при
,
. Но, из рис. 59,б , видно, что
. Тогда. Окончательно получаем

. (50)

Здесь - линейная скорость точки
. Как было получено ранее, эта скорость направлена по касательной к траектории в данной точке, т.е. по касательной к окружности.

Таким образом, модуль линейной (окружной) скорости точки вращающегося тела равен произведению абсолютного значения угловой скорости на расстояние от этой точки до оси вращения.

Теперь свяжем линейные составляющие ускорения точки с угловыми параметрами.

,
. (51)

Модуль касательного ускорения точки твердого тела, вращающегося вокруг неподвижной оси, равен произведению углового ускорения тела на расстояние от этой точки до оси вращения.

,
. (52)

Модуль нормального ускорения точки твердого тела, вращающегося вокруг неподвижной оси, равен произведению квадрата угловой скорости тела на расстояние от этой точки до оси вращения.

Тогда выражение для полного ускорения точки принимает вид

. (53)

Направления векторов ,,показаны на рисунке 59,в .

Плоским движением твердого тела называется такое движение, при котором все точки тела перемещаются параллельно некоторой неподвижной плоскости. Примеры такого движения:

Движение любого тела, основание которого скользит по данной неподвижной плоскости;

Качение колеса по прямолинейному участку пути (рельсу).

Получим уравнения плоского движения. Для этого рассмотрим плоскую фигуру, движущуюся в плоскости листа (рис. 60). Отнесем это движение к неподвижной системе координат
, а с самой фигурой свяжем подвижную систему координат
, которая перемещается вместе с ней.

Очевидно, что положение движущейся фигуры на неподвижной плоскости определяется положением подвижных осей
относительно неподвижных осей
. Такое положение определяется положением подвижного начала координат, т.е. координатами,и углом поворота, подвижной системы координат, относительно неподвижной, который будем отсчитывать от осив направлении обратном движению часовой стрелки.

Следовательно, движение плоской фигуры в ее плоскости будет вполне определено, если для каждого момента времени будут известны значения ,,, т.е. уравнения вида:

,
,
. (54)

Уравнения (54) являются уравнениями плоского движения твердого тела, так как если эти функции известны, то для каждого момента времени можно из этих уравнений найти соответственно ,,, т.е. определить положение движущейся фигуры в данный момент времени.

Рассмотрим частные случаи:

1.

, тогда движение тела будет поступательным, так как подвижные оси перемещаются, оставаясь параллельными своему начальному положению.

2.

,

. При таком движении меняется только угол поворота, т.е. тело будет вращаться относительно оси, проходящей перпендикулярно плоскости рисунка через точку.

Разложение движения плоской фигуры на поступательное и вращательное

Рассмотрим два последовательных положения и
, которые занимает тело в моменты времении
(рис. 61). Тело из положенияв положение
можно перенести следующим образом. Перенесем сначала телопоступательно . При этом отрезок
переместится параллельно самому себе в положение
, а затемповернем тело вокруг точки (полюса) на угол
до совпадения точеки.

Следовательно, любое плоское движение можно представить как сумму поступательного движения вместе с выбранным полюсом и вращательного движения , относительно данного полюса.

Рассмотрим методы, с помощью которых можно определить скорости точек тела, совершающего плоское движение.

1. Метод полюса. Этот метод основывается на полученном разложении плоского движения на поступательное и вращательное. Скорость любой точки плоской фигуры можно представить в виде двух составляющих: поступательной, со скоростью равной скорости произвольно выбранной точки – полюса , и вращательной вокруг этого полюса.

Рассмотрим плоское тело (рис. 62). Уравнения движения имеют вид:
,
,
.

Определяем из этих уравнений скорость точки (как при координатном способе задания)

,
,
.

Таким образом, скорость точки - величина известная. Принимаем эту точку за полюс и определим скорость произвольной точки
тела.

Скорость
будет складываться из поступательной составляющей, при движении вместе с точкой, и вращательной
, при вращении точки
относительно точки. Скорость точкиперенесем в точку
параллельно самой себе, так как при поступательном движении скорости всех точек равны как по величине, так и по направлению. Скорость
определится по зависимости (50)
, и направлен этот вектор перпендикулярно радиусу
по направлению вращения
. Вектор
будет направлен по диагонали параллелограмма, построенного на векторахи
, а его модуль определиться зависимостью:

, .(55)

2. Теорема о проекциях скоростей двух точек тела.

Проекции скоростей двух точек твердого тела на прямую, соединяющую эти точки, равны между собой.

Рассмотрим две точки тела и(рис. 63). Принимая точкуза полюс, определим направлениепо зависимости (55):
. Проектируем это векторное равенство на линию
и, учитывая, что
перпендикулярно
, получаем

3. Мгновенный центр скоростей.

Мгновенным центром скоростей (МЦС) называется точка, скорость которой в данный момент времени равна нулю.

Покажем, что если тело движется не поступательно, то такая точка в каждый момент времени существует и притом единственная. Пусть в момент времени точкиитела, лежащие в сечении, имеют скоростии, не параллельные друг другу (рис. 64). Тогда точка
, лежащая на пересечении перпендикуляров к векторами, и будет МЦС, так как
.

Действительно, если допустить, что
, то по теореме (56), вектор
должен быть одновременно перпендикулярен
и
, что невозможно. Из этой же теоремы видно, что никакая другая точка сеченияв этот момент времени не может иметь скорость равную нулю.

Применяя метод полюса
- полюс, определим скорость точки(55):, т.к.
,
. (57)

Аналогичный результат можно получить для любой другой точки тела. Следовательно, скорость любой точки тела равна ее вращательной скорости относительно МЦС:

,
,
, т.е. скорости точек тела пропорциональны их расстояниям до МЦС.

Из рассмотренных трех способов определения скоростей точек плоской фигуры видно, что предпочтительным является МЦС, так как здесь скорость сразу определяется как по модулю, так и по направлению одной составляющей. Однако этот способ можно применять, если нам известен или мы можем определить для тела положение МЦС.

Определение положения МЦС

1. Если нам известны для данного положения тела направления скоростей двух точек тела, то МЦС будет точкой пересечения перпендикуляров к этим векторам скоростей.

2. Скорости двух точек тела антипараллельны (рис. 65,а ). В этом случае перпендикуляр к скоростям будет общим, т.е. МЦС находится где-то на этом перпендикуляре. Чтобы определить положение МЦС, надо соединить концы векторов скоростей. Точка пересечения этой линии с перпендикуляром будет искомым МЦС. При таком случае МЦС находится между этими двумя точками.

3. Скорости двух точек тела параллельны, но не равны по величине (рис.65,б ). Процедура получения МЦС аналогична описанной в пункте 2.

г) Скорости двух точек равны как по величине, так и по направлению (рис.65,в ). Получаем случай мгновенно поступательного движения, при котором скорости всех точек тела равны. Следовательно, угловая скорость тела в данном положении равна нулю:

4. Определим МЦС для колеса, катящегося без скольжения по неподвижной поверхности (рис. 65,г ). Так как движение происходит без скольжения, то в точке контакта колеса с поверхностью скорость будет одинакова и равна нулю, так как поверхность неподвижна. Следовательно, точка контакта колеса с неподвижной поверхностью будет являться МЦС.

Определение ускорений точек плоской фигуры

При определении ускорений точек плоской фигуры прослеживается аналогия с методами определения скоростей.

1. Метод полюса. Так же, как и при определении скоростей, принимаем за полюс произвольную точку тела, ускорение которой нам известно, или мы можем его определить. Тогда ускорение любой точки плоской фигуры равно сумме ускорений полюса и ускорения во вращательном движении вокруг этого полюса:

При этом составляющая
определяет ускорение точкипри ее вращении вокруг полюса. При вращении траектория движения точки будет криволинейной, а значит
(рис. 66).

Тогда зависимость (58) принимает вид
. (59)

Учитывая зависимости (51) и (52), получаем
,
.

2. Мгновенный центр ускорений.

Мгновенным центром ускорений (МЦУ) называется точка, ускорение которой в данный момент времени равно нулю.

Покажем, что в каждый данный момент времени такая точка существует. Принимаем за полюс точку , ускорение которой
нам известно. Находим угол, лежащий в пределах
, и удовлетворяющий условию
. Если
, то
и наоборот, т.е. уголоткладывается по направлению. Отложим от точкипод угломк вектору
отрезок
(рис. 67). Полученная такими построениями точка
будет МЦУ.

Действительно, ускорение точки
равно сумме ускорений
полюсаи ускорения
во вращательном движении вокруг полюса:
.

,
. Тогда
. С другой стороны, ускорение
образует с направлением отрезка
угол
, который удовлетворяет условию
. Знак минус поставлен перед тангенсом угла, так как вращение
относительно полюсапротив хода часовой стрелки, а угол
откладывается по ходу часовой стрелке. Тогда
.

Следовательно,
и тогда
.

Частные случаи определения МЦУ

1.
. Тогда
, и, следовательно, МЦУ не существует. В этом случае тело движется поступательно, т.е. скорости и ускорения всех точек тела равны.

2.
. Тогда
,
. Значит, МЦУ лежит на пересечении линий действия ускорений точек тела (рис.68,а ).

3.
. Тогда,
,
. Значит, МЦУ лежит на пересечении перпендикуляров к ускорениям точек тела (рис.68,б ).

4.
. Тогда
,

. Значит, МЦУ лежит на пересечении лучей, проведенных к ускорениям точек тела под углом(рис.68,в ).

Из рассмотренных частных случаев можно сделать вывод: если принять точку
за полюс, то ускорение любой точки плоской фигуры определится ускорением во вращательном движении вокруг МЦУ:

. (60)

Сложным движением точки называется такое движение, при котором точка одновременно участвует в двух или более движениях. При таком движении положение точки определяют относительно подвижной и относительно неподвижной систем отсчета.

Движение точки относительно подвижной системы отсчета называется относительным движением точки . Параметры относительного движения условимся обозначать
.

Движение той точки подвижной системы отсчета, с которой в данный момент совпадает движущаяся точка относительно неподвижной системы отсчета, называется переносным движением точки . Параметры переносного движения условимся обозначать
.

Движение точки относительно неподвижной системы отсчета называется абсолютным (сложным) движением точки . Параметры абсолютного движения условимся обозначать
.

В качестве примера сложного движения, можно рассмотреть движение человека в движущемся транспорте (трамвай). В этом случае движение человека отнесено к подвижной системе координат – трамваю и к неподвижной системе координат – земле (дороге). Тогда исходя из данных выше определений, движение человека относительно трамвая – относительно, движение вместе с трамваем относительно земли – переносное, а движение человека относительно земли – абсолютное.

Будем определять положение точки
радиусами – векторами относительно подвижной
и неподвижной
систем координат (рис. 69). Введем обозначения:- радиус-вектор, определяющий положение точки
относительно подвижной системы координат
,
;- радиус-вектор, определяющий положение начала подвижной системы координат (точки) (точки);- радиус – вектор, определяющий положение точки
относительно неподвижной системы координат
;
,.

Получим условия (ограничения), соответствующие относительному, переносному и абсолютному движениям.

1. При рассмотрении относительного движения будем считать, что точка
перемещается относительно подвижной системы координат
, а сама подвижная система координат
относительно неподвижной системы координат
не перемещается.

Тогда координаты точки
будут меняться в относительном движении, а орт-вектора подвижной системы координат изменяться по направлению не будут:


,

,

.

2. При рассмотрении переносного движения, будем считать, что координаты точки
по отношению к подвижной системе координат зафиксированы, и точка перемещается вместе с подвижной системой координат
относительно неподвижной
:


,

,

,.

3. При абсолютном движении точка движется и относительно
и вместе с системой координат
относительно неподвижной
:

Тогда выражения для скоростей, с учетом (27), имеют вид

,
,

Сравнивая эти зависимости, получаем выражение для абсолютной скорости:
. (61)

Получили теорему о сложении скоростей точки в сложном движении: абсолютная скорость точки равна геометрической сумме относительной и переносной составляющих скорости.

Используя зависимость (31), получаем выражения для ускорений:

,

Сравнивая эти зависимости, получаем выражение для абсолютного ускорения:
.

Получили, что абсолютное ускорение точки не равно геометрической сумме относительной и переносной составляющих ускорений. Определим составляющую абсолютного ускорения, стоящую в скобках, для частных случаев.

1. Переносное движение точки поступательное
. В этом случае оси подвижной системы координат
перемещаются все время параллельно самим себе, тогда.

,

,

,
,
,
, тогда
. Окончательно получаем

. (62)

Если переносное движение точки поступательное, то абсолютное ускорение точки равно геометрической сумме относительной и переносной составляющей ускорения.

2. Переносное движение точки непоступательное. Значит, в этом случае подвижная система координат
вращается вокруг мгновенной оси вращения с угловой скоростью(рис. 70). Обозначим точку на конце векторачерез. Тогда, используя векторный способ задания (15), получаем вектор скорости этой точки
.

С другой стороны,
. Приравнивая правые части этих векторных равенств, получаем:
. Поступая аналогично, для остальных орт векторов, получаем:
,
.

В общем случае абсолютное ускорение точки равно геометрической сумме относительной и переносной составляющей ускорения плюс удвоенное векторное произведение вектора угловой скорости переносного движения на вектор линейной скорости относительного движения.

Удвоенное векторное произведение вектора угловой скорости переносного движения на вектор линейной скорости относительного движения называется ускорением Кориолиса и обозначается

. (64)

Ускорение Кориолиса характеризует изменение относительной скорости в переносном движении и изменение переносной скорости в относительном движении.

Направляется
по правилу векторного произведения. Вектор ускорения Кориолиса всегда направлен перпендикулярно плоскости, которую образуют вектораи, таким образом, чтобы, смотря с конца вектора
, видеть поворотк, через наименьший угол, против хода часовой стрелки.

Модуль ускорения Кориолиса равен.

Поступательное и вращательное движение

Наиболее простое движение тела - такое, при котором все точки тела движутся одинаково, описывая одинаковые траектории. Такое движение называется поступательным . Мы получим этот тип движения, двигая лучинку так, чтобы она все время оставалась параллельной самой себе. траектории могут быть как прямыми так и кривыми линиями.
Поступательно движется игла швейной машины, поршень в цилиндре паровой машины или двигателя внутреннего сгорания, кузов автомашины (но не колеса!) при езде по прямой дороге и т. д.

Другой простой тип движения - это вращательное движение тела, или вращение. При вращательном движении все точки тела движутся по окружностям, центры которых лежат на прямой. Эту прямую называют осью вращения. Окружности лежат в параллельных плоскостях, перпендикулярных к оси вращения. Точки тела, лежащие на оси вращения, остаются неподвижными. Вращение не является поступательным движением: при вращении оси.

Траектория путь перемещение скорость ускорение определение

Линию, вдоль которой движется материальная точка, называют траекторией . Длину траектории называют путем. Единица пути - метр.
Путь = скорость* время. S=v*t.
Направленный отрезок прямой, проведенный из начального положения движущейся точки в ее конечное положение, называется перемещением (s). Перемещение - величина векторная. Единица перемещения - метр.
Скорость - векторная физическая величина, характеризующая быстроту перемещения тела, численно равная отношению перемещения за малый промежуток времени к величине этого промежутка времени.
Формула скорости имеет вид v = s/t. Единица скорости - м/с
Ускорение - векторная физическая величина, характеризующая быстроту изменения скорости, численно равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло. Формула для вычисления ускорения: a=(v-v0)/t; Единица ускорения – метр/(секунда в квадрате).

Составляющие ускорения тангенциальное и нормальное ускорения

Тангенциальное ускорение направлено по касательной к траектории

Нормальное ускорение направлено по нормали к траектории

Тангенциальное ускорение характеризует изменение скорости по величине. Если скорость по величине не изменяется, то тангенциальная составляющая равна нулю, а нормальная составляющая ускорения равна полному ускорению.

Нормальное ускорение характеризует изменение скорости по направлению. Если направление скорости не изменяется, движение происходит по прямолинейной траектории.

В общем случае полное ускорение:

Итак, нормальная составляющая вектора ускорения

Быстрота изменения со временем направления касательной к траектории. Она тем больше (), чем больше искривлена траектория и чем быстрее перемещается частица по траектории.

4)Угловой путь

Угловой путь это элементарный угол поворота :

Радиан – это угол, который вырезает на окружности дугу, равную радиусу .

Направление углового пути определяется правилом правого винта : если головку винта вращать в направлении движения точки по окружности, то поступательное движение острия винта укажет направление .

Угловая скорость (средняя и мгновенная)

Средняя угловая скорость это физическая величина, численно равная отношению углового пути к промежутку времени :

Мгновенная угловая скорость это физическая величина, численно равная изменения пределу отношения углового пути к промежутку времени при стремлении данного промежутка к нулю, или является первой производной углового пути по времени :

, .

Законы Ньютона

Первый закон Ньютона

  • Инерциальной называется та система отсчёта, относительно которой любая, изолированная от внешних воздействий, материальная точка либо покоится, либо сохраняет состояние равномерного прямолинейного движения.
  • Первый закон Ньютона гласит:

По сути, этот закон постулирует инерцию тел, что сегодня кажется очевидным. Но это было далеко не так на заре исследования природы. Аристотель вот утверждал, что причиной всякого движения является сила, т. е. движения по инерции для него не существовало. [источник? ]

Второй закон Ньютона

Второй закон Ньютона - дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и её ускорением.

Второй закон Ньютона утверждает, что

При подходящем выборе единиц измерения этот закон можно записать в виде формулы:

где - ускорение тела;

Сила, приложенная к телу;

m - масса тела.

Или в более известном виде:

Если на тело действуют несколько сил, то второй закон Ньютона записывается:

В случае, когда масса материальной точки меняется со временем, второй закон Ньютона формулируется в общем виде: скорость изменения импульса точки равна действующей на неё силе.

где - импульс (количество движения) точки;

t - время;

Производная по времени.

Второй закон Ньютона действителен только для скоростей, много меньших скорости света и в инерциальных системах отсчёта.

Третий закон Ньютона

Этот закон объясняет, что происходит с двумя взаимодействующими телами. Возьмём для примера замкнутую систему, состоящую из двух тел. Первое тело может действовать на второе с некоторой силой , а второе - на первое с силой . Как соотносятся силы? Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия. Подчеркнём, что эти силы приложены к разным телам, а потому вовсе не компенсируются.

Сам закон:

Выводы

Из законов Ньютона сразу же следуют некоторые интересные выводы. Так, третий закон Ньютона говорит, что, как бы тела ни взаимодействовали, они не могут изменить свой суммарный импульс: возникает закон сохранения импульса . Далее, надо потребовать, чтобы потенциал взаимодействия двух тел зависел только от модуля разности координат этих тел U (| r 1 − r 2 |). Тогда возникает закон сохранения суммарной механической энергии взаимодействующих тел:

Законы Ньютона являются основными законами механики. Из них могут быть выведены все остальные законы механики.

Теорема Штейнера

Теорема Штейнера - формулировка

Согласно теореме Штейнера, установлено, что момент инерции тела при расчете относительно произвольно оси соответствует сумме момента инерции тела относительно такой оси, которая проходит через центр масс и является параллельной данной оси, а также плюс произведение квадрата расстояния между осями и массы тела, по следующей формуле (1):

Где в формуле принимаем соответственно величины: d – расстояние между осями ОО1║О’O1’;
J0 – момент инерции тела, рассчитанный относительно оси, что проходит сквозь центр масс и будет определяться соотношением (2):

J0 = Jd = mR2/2 (2)

Например, для обруча на рисунке момент инерции относительно оси O’O’, равен

Момент инерции прямого стержня длиной , ось перпендикулярна стержню и проходит через его конец.

10) момент импульса закон сохранения момента импульса

Моментом импульса (количества движения) материальной точки А относительно неподвижной точки О называется физическая величина, определяемая векторным произведением:

где r - радиус-вектор, проведенный из точки О в точку A, p =mv - импульс материальной точки (рис. 1); L - псевдовектор,

Рис.1

Моментом импульса относительно неподвижной оси z называется скалярная величина L z , равная проекции на эту ось вектора момента импульса, определенного относительно произвольной точки О данной оси. Момент импульса L z не зависит от положения точки О на оси z.

При вращении абсолютно твердого тела вокруг неподвижной оси z каждая точка тела движется по окружности постоянного радиуса r i со скоростью v i . Скорость v i и импульс m i v i перпендикулярны этому радиусу, т. е. радиус является плечом вектора m i v i . Значит, мы можем записать, что момент импульса отдельной частицы равен

и направлен по оси в сторону, определяемую правилом правого винта.

Зако́н сохране́ния моме́нта и́мпульса Математически выражается через векторную сумму всех моментов импульса относительно выбранной оси для замкнутой системы тел, которая остается постоянной, пока на систему не воздействуют внешние силы. В соответствии с этим момент импульса замкнутой системы в любой системе координат не изменяется со временем.

Закон сохранения момента импульса есть проявление изотропности пространства относительно поворота.

В упрощённом виде: , если система находится в равновесии.

Динамика твердого тела

Вращение вокруг неподвижной оси. Момент импульса твердого тела относительно неподвижной оси вращения равен

Направление проекции совпадает с направлением т.е. определяется по правилу буравчика. Величина

называется моментом инерции твердого тела относительно Продифференцировав , получим

Это уравнение называют основным уравнением динамики вращательного движения твердого тела вокруг неподвижной оси. Вычислим еще кинетическую энергию вращающегося твердого тела:

и работу внешней силы при повороте тела:

Плоское движение твердого тела. Плоское движение есть суперпозиция поступательного движенияцентра масс и вращательного движения в системе центра масс (см. разд. 1.2). Движение центра масс описываетсявторым законом Ньютона и определяется результирующей внешней силой (уравнение (11)).Вращательное движение в системе центра масс подчиняется уравнению (39), в котором надо учитывать только реальные внешние силы, так как момент сил инерции относительно центра масс равен нулю (аналогично моменту сил тяжести, пример 1 из разд. 1.6). Кинетическая энергия плоского движения равна уравнение Момент импульса относительно неподвижной оси, перпендикулярной плоскости движения, вычисляется по формуле (см. уравнение где - плечо скорости центра масс относительно оси, а знаки определяются выбором положительного направления вращения.

Движение с неподвижной точкой. Угловая скорость вращения, направленная вдоль оси вращения, меняет свое направление как в пространстве, так и по отношению к самому твердому телу. Уравнение движения

которое называют основным уравнением движения твердого тела с неподвижной точкой, позволяетузнать, как изменяется момент импульса Так как вектор в общем случае не параллелен вектору то для

замыкания уравнений движения надо научиться связывать эти величины друг с другом.

Гироскопы. Гироскопом называют твердое тело, быстро вращающееся относительно своей оси симметрии. Задачу о движении оси гироскопа можно решать в гироскопическом приближении: оба вектора направлены вдоль оси симметрии. Уравновешенный гироскоп (закрепленный в центре масс) обладает свойством безынерционно его ось перестает двигаться, как только исчезает внешнее воздействие ( обращается в нуль). Это позволяет использовать гироскоп для сохранения ориентации в пространстве.

На тяжелый гироскоп (рис. 12), у которого центр масс смещен на расстояние от точки закрепления действует момент силы тяжедти, направленный перпендикулярно Так как то и ось гироскопа совершают регулярное вращение вокруг вертикальной оси (прецессия гироскопа).

Конец вектора вращается по горизонтальной окружности радиусом а с угловой скоростью

Угловая скорость прецессии не зависит от угла наклона оси а.

Зако́ны сохране́ния - фундаментальные физические законы, согласно которым при определённых условиях некоторые измеримые физические величины, характеризующие замкнутую физическую систему, не изменяются с течением времени.

· Закон сохранения энергии

· Закон сохранения импульса

· Закон сохранения момента импульса

· Закон сохранения массы

· Закон сохранения электрического заряда

· Закон сохранения лептонного числа

· Закон сохранения барионного числа

· Закон сохранения чётности

Момент силы

Моментом силы относительно оси вращения называется физическая величина, равная про­изведению силы на ее плечо.

Момент силы определяют по формуле:

М - FI , где F - сила, I - плечо силы.

Плечом силы называется кратчайшее расстояние от линии действия силы до оси вращения тела.

Момент силы характеризует вращающее действие силы. Это действие зависит как от силы, так и от плеча. Чем больше плечо, тем меньшую силу надо приложить,

За единицу момента силы в СИ принимается момент силы в 1 Н, плечо которой равно 1м - ньютон-метр (Н м).

Правило моментов

Твердое тело, способное вращаться вокруг неподвижной оси, находится в равновесии, если момент силы М, вращающей его по часовой стрелке, равен моменту силы М2, вращающей его против часовой стрелки:

М1 = -М2 или F 1 ll = - F 2 l 2 .

Момент пары сил одинаков относительно любой оси, перпендикулярной к плоскости пары. Суммарный момент М пары всегда равен произведению одной из сил F на расстояние I между силами, которое называется плечом пары, независимо от того, на какие отрезки и /2 разделяет положение оси плечо пары:

M = Fll + Fl2=F(l1 + l2) = Fl.

Если тело вращается вокруг неподвижной оси z с угловой скоростью , то линейная скорость i -й точки , R i – расстояние до оси вращения. Следовательно,

Здесь I c – момент инерции относительно мгновенной оси вращения, проходящей через центр инерции.

Работа момента сил.

Работа силы.
Работа постоянной силы, действующей на прямолинейно движущееся тело
, где - перемещение тела, - сила, действующая на тело.

В общем случае, работа переменной силы, действующей на тело, движущееся по криволинейной траектории . Работа измеряется в Джоулях [Дж].

Работа момента сил, действующего на тело, вращающееся вокруг неподвижной оси , где - момент силы, - угол поворота.
В общем случае .
Совершенная нат телом работа переходит в его кинетическую энергию.

Механические колебания.

Колеба́ния - повторяющийся в той или иной степени во временипроцесс изменения состояний системы.

Колебания почти всегда связаны с попеременным превращением энергии одной формы проявления вдругую форму.

Отличие колебания от волны.

Колебания различной физической природы имеют много общих закономерностей и тесно взаимосвязаны cволнами. Поэтому исследованиями этих закономерностей занимается обобщённая теория колебаний иволн. Принципиальное отличие от волн: при колебаниях не происходит переноса энергии, это, так сказать, «местные» преобразования энергии.

Характеристики колебаний

Амплитуда (м) - максимальное отклонение колеблющейся величины от некоторого усреднённого еёзначения для системы.

Промежуток времени (сек) , через который повторяются какие-либо показатели состояния системы(система совершает одно полное колебание), называют периодом колебаний.

Число колебаний в единицу времени называется частотой колебаний (Гц, сек -1) .

Период колебаний и частота – обратные величины;

В круговых или циклических процессах вместо характеристики «частота» используется понятие круговая илициклическая частота (Гц, сек -1 , об/сек) , показывающая число колебаний за время 2π:

Фаза колебаний -- определяет смещение в любой момент времени, т.е. определяет состояниеколебательной системы.

Маятник мат физ пруж

. Пружинный маятник - это груз массой m, который подвешен на абсолютно упругой пружине и совершает гармонические колебания под действием упругой силы F = –kx, где k - жесткость пружины. Уравнение движения маятника имеет вид

Из формулы (1) вытекает, что пружинный маятник совершает гармонические колебания по закону х = Асоs(ω 0 t+φ) с циклической частотой

и периодом

Формула (3) верна для упругих колебаний в границах, в которых выполняется закон Гука, т. е. если масса пружины мала по сравнению с массой тела. Потенциальная энергия пружинного маятника, используя (2) и формулу потенциальной энергии предыдущего раздела, равна

2. Физический маятник - это твердое тело, которое совершает колебания под действием силы тяжести вокруг неподвижной горизонтальной оси, которая проходит через точку О, не совпадающую с центром масс С тела (рис. 1).

Рис.1

Если маятник из положения равновесия отклонили на некоторый угол α, то, используя уравнение динамики вращательного движения твердого тела, момент M возвращающей силы

где J - момент инерции маятника относительно оси, которая проходит через точку подвеса О, l – расстояние между осью и центром масс маятника, F τ ≈ –mgsinα ≈ –mgα - возвращающая сила (знак минус указывает на то, что направления F τ и α всегда противоположны; sinα ≈ α поскольку колебания маятника считаются малыми, т.е. маятника из положения равновесия отклоняется на малые углы). Уравнение (4) запишем как

Принимая

получим уравнение

идентичное с (1), решение которого (1) найдем и запишем как:

Из формулы (6) вытекает, что при малых колебаниях физический маятник совершает гармонические колебания с циклической частотой ω 0 и периодом

где введена величина L=J/(ml ) - .

Точка О" на продолжении прямой ОС, которая отстоит от точки О подвеса маятника на расстоянии приведенной длины L, называетсяцентром качаний физического маятника (рис. 1). Применяя теорему Штейнера для момента инерции оси, найдем

т. е. ОО" всегда больше ОС. Точка подвеса О маятника и центр качаний О" имеют свойство взаимозаменяемости : если точку подвеса перенести в центр качаний, то прежняя точка О подвеса будет новым центром качаний, и при этом не изменится период колебаний физического маятника.

3. Математический маятник - это идеализированная система, состоящая из материальной точки массой m, которая подвешена на нерастяжимой невесомой нити, и которая колеблется под действием силы тяжести. Хорошее приближение математического маятника есть небольшой тяжелый шарик, который подвешен на длинной тонкой нити. Момент инерции математического маятника

где l - длина маятника.

Поскольку математический маятник есть частный случай физического маятника, если предположить, что вся его масса сосредоточена в одной точке - центре масс, то, подставив (8) в (7), найдем выражение для периода малых колебаний математического маятника

Сопоставляя формулы (7) и (9), видим, что если приведенная длина L физического маятника равна длине l математического маятника, то периоды колебаний этих маятников одинаковы. Значит, приведенная длина физического маятника - это длина такого математического маятника, у которого период колебаний совпадает с периодом колебаний данного физического маятника.

Гар. колебания и харак.

Колебаниями называются движения или процессы, характеризующиеся определенной повторяемостью во времени. Колебательные процессы имеют широкое распространение в природе и технике, например качание маятника часов, переменный электрический ток и т. Д

Простейшим типом колебаний являются гармонические колебания - колебания, при которых колеблющаяся величина изменяется со временем по закону синуса (косинуса). Гармонические колебания некоторой величины s описываются уравнением вида

где ω 0 - круговая (циклическая) частота , А - максимальное значение колеблющейся величины, называемое амплитудой колебания , φ - начальная фаза колебания в момент времени t=0, (ω 0 t+φ) - фаза колебания в момент времени t. Фаза колебания есть значение колеблющейся величины в данный момент времени. Так как косинус имеет значение в пределах от +1 до –1, то s может принимать значения от +А до –А.

Определенные состояния системы, которая совершает гармонические колебания, повторяются через промежуток времени Т, имеющий название период колебания , за который фаза колебания получает приращение (изменение) 2π, т. е.

Величина, обратная периоду колебаний,

т. е. число полных колебаний, которые совершаются в единицу времени, называется частотой колебаний . Сопоставляя (2) и (3), найдем

Единица частоты - герц (Гц): 1 Гц - частота периодического процесса, во время которого за 1 с совершается один цикл процесса.

Амплитуда колебаний

Амплитудой гармонического колебания называется наибольшее значение смещения тела от положения равновесия. Амплитуда может принимать различные значения. Она будет зависеть от того, насколько мы сместим тело в начальный момент времени от положения равновесия.

Амплитуда определяется начальными условиями, то есть энергией сообщаемой телу в начальный момент времени. Так как синус и косинус могут принимать значения в диапазоне от -1 до 1, то в уравнении должен присутствовать множитель Xm, выражающий амплитуду колебаний. Уравнение движения при гармонических колебаниях:

x = Xm*cos(ω0*t).

Затух. колеб и их хар

Затухающие колебания

Затуханием колебаний называется постепенное уменьшение амплитуды колебаний с течением времени, обусловленное потерей энергии колебательной системой.

Собственные колебания без затухания – это идеализация. Причины затухания могут быть разные. В механической системе к затуханию колебаний приводит наличие трения. В электромагнитном контуре к уменьшению энергии колебаний приводят тепловые потери в проводниках, образующих систему. Когда израсходуется вся энергия, запасенная в колебательной системе, колебания прекратятся. Поэтому амплитуда затухающих колебаний уменьшается, пока не станет равной нулю.

где β – коэффициент затухания

В новых обозначениях дифференциальное уравнение затухающих колебаний имеет вид:

. где β – коэффициент затухания , где ω 0 – частота незатухающих свободных колебаний в отсутствии потерь энергии в колебательной системе.

Это линейное дифференциальное уравнение второго порядка.

Частота затухающих колебаний :

В любой колебательной системе затухание приводит к уменьшению частоты и соответственно увеличению периода колебаний.

(физический смысл имеет только вещественный корень, поэтому ).

Период затухающих колебаний:

.

Смысл, который вкладывался в понятие периода для незатухающих колебаний, не подходит для затухающих колебаний, так как колебательная система никогда не возвращается в исходное состояние из-за потерь колебательной энергии. При наличии трения колебания идут медленнее: .

Периодом затухающих колебаний называется минимальный промежуток времени, за который система проходит дважды положение равновесия в одном направлении.

Амплитуда затухающих колебаний :

Для пружинного маятника .

Амплитуда затухающих колебаний – величина не постоянная, а изменяющаяся со временем тем быстрее, чем больше коэффициент β. Поэтому определение для амплитуды, данное ранее для незатухающих свободных колебаний, для затухающих колебаний надо изменить.

При небольших затуханиях амплитудой затухающих колебаний называется наибольшее отклонение от положения равновесия за период.

Изменение амплитуды затухающих колебаний происходит по экспоненциальному закону:

Пусть за время τ амплитуда колебаний уменьшится в "e " раз ("е" – основание натурального логарифма, е ≈ 2,718). Тогда, с одной стороны, , а с другой стороны, расписав амплитуды А зат. (t) и А зат. (t+τ), имеем . Из этих соотношений следует βτ = 1, отсюда

Вынужденные колеб.

Волны и их характеристика

Волна́ - возбуждение среды, распространяющееся в пространстве и времени или в фазовом пространстве с переносом энергии и без переноса массы

По своему характеру волны подразделяются на:

По признаку распространения в пространстве: стоячие, бегущие.

По характеру волны: колебательные, уединённые (солитоны).

По типу волн: поперечные, продольные, смешанного типа.

По законам, описывающим волновой процесс: линейные, нелинейные.

По свойствам субстанции: волны в дискретных структурах, волны в непрерывных субстанциях.

По геометрии: сферические (пространственные), одномерные (плоские), спиральные.

Характеристики волн

Временна́я и пространственная периодичности

временная периодичность - скорость изменения фазы с течением времени в какой-то заданной точке, называемую частотой волны ;
пространственная периодичность - скорость изменения фазы (запаздывание процесса во времени) в определённый момент времени с изменением координаты - длина волны λ.

Временная и пространственная периодичности взаимосвязаны. В упрощённом виде для линейных волн эта зависимость имеет следующий вид:

где c - скорость распространения волны в данной среде.

Интенсивность волны

Для характеристики интенсивности волнового процесса используют три параметра: амплитуда волнового процесса, плотность энергии волнового процесса и плотность потока энергии.

Термодинамические системы

В термодинамике изучаются физические системы, состоящие из большого числа частиц и находящиеся в состоянии термодинамического равновесия или близком к нему. Такие системы называются термодинамическими системами.

Единицей измерения числа частиц в термодинамической системе обычно служит число Авогадро (примерно 6·10^23 частиц на моль вещества), дающее представление, о величинах какого порядка идёт речь.

Термодинамическое равновесие - состояние системы, при котором остаются неизменными по времени макроскопические величины этой системы (температура,давление, объём, энтропия) в условиях изолированности от окружающей среды.

Термодинамические параметры

Различают экстенсивные параметры состояния, пропорциональные массе системы:

объём, внутренняя энергия, энтропия, энтальпия, энергия Гиббса, энергия Гельмгольца (свободная энергия),

и интенсивные параметры состояния, не зависящие от массы системы:

давление, температура, концентрация, магнитная индукция и др.

Законы идеального газа

Закон Бойля - Мариотта. Пусть газ находится в условиях, когда его температура поддерживается постоянной (такие условия называются изотермическими ).Тогда для данной массы газа произведение давления на объем есть величина постоянная:

Эту формулу называют уравнением изотермы . Графически зависимость p от V для различных температур изображена на рисунке.

Закон Гей - Люссака. Пусть газ находится в условиях, когда постоянным поддерживается его давление (такие условия называются изобарическими ). Их можно осуществить, если поместить газ в цилиндр, закрытый подвижным поршнем. Тогда изменение температуры газа приведет к перемещению поршня и изменению объема. Давление же газа останется постоянным. При этом для данной массы газа его объем будет пропорционален температуре:

Графически зависимость V от T для различных давлений изображена на рисунке.

Движение твердого тела разделяют на виды:

  • поступательное;
  • вращательное по неподвижной оси;
  • плоское;
  • вращательное вокруг неподвижной точки;
  • свободное.

Первые два из них – простейшие, а остальные представляют как комбинацию основных движений.

Определение 1

Поступательным называют движение твердого тела, при котором любая прямая, проведенная в нем, двигается, оставаясь параллельной своему начальному направлению.

Прямолинейное движение является поступательным, но не всякое поступательное будет прямолинейным. При наличии поступательного движения путь тела представляют в виде кривых линий.

Рисунок 1 . Поступательное криволинейное движение кабин колеса обзора

Теорема 1

Свойства поступательного движения определяются теоремой: при поступательном движении все точки тела описывают одинаковые траектории и в каждый момент времени обладают одинаковыми по модулю и направлению значениями скорости и ускорения.

Следовательно, поступательное движение твердого тела определено движением любой его точки. Это сводится к задаче кинематики точки.

Определение 2

Если имеется поступательное движение, то общая скорость для всех точек тела υ → называется скоростью поступательного движения , а ускорение a → - ускорением поступательного движения . Изображение векторов υ → и a → принято указывать приложенными в любой точке тела.

Понятие о скорости и ускорении тела имеют смысл только при наличии поступательного движения. В других случаях точки тела характеризуются разными скоростями и ускорениями.

Определение 3

Вращательное движение абсолютно твердого тела вокруг неподвижной оси – это движение всех точек тела, находящихся в плоскостях, перпендикулярных неподвижной прямой, называемой осью вращения, и описывание окружностей, центры которых располагаются на этой оси.

Чтобы определить положение вращающегося тела, необходимо начертить ось вращения, вдоль которой направляется ось A z , полуплоскость – неподвижную, проходящую через тело и движущуюся с ним, как показано на рисунке 2 .

Рисунок 2 . Угол поворота тела

Положение тела в любой момент времени будет характеризоваться соответствующим знаком перед углом φ между полуплоскостями, который получил название угол поворота тела. При его откладывании, начиная от неподвижной плоскости (направление против хода часовой стрелки), угол принимает положительное значение, против плоскости – отрицательное. Измерение угла производится в радианах. Для определения положения тела в любой момент времени следует учитывать зависимость угла φ от t , то есть φ = f (t) . Уравнение является законом вращательного движения твердого тела вокруг неподвижной оси.

При наличии такого вращения значения углов поворота радиус-вектора различных точек тела будут аналогичны.

Вращательное движение твердого тела характеризуется угловой скоростью ω и угловым ускорением ε .

Уравнения вращательного движения получают из уравнений поступательного, используя замены перемещения S на угловое перемещение φ , скорость υ на угловую скорость ω , а ускорение a на угловое ε .

Вращательное и поступательное движение. Формулы

Задачи на вращательное движение

Пример 1

Дана материальная точка, которая движется прямолинейно соответственно уравнению s = t 4 + 2 t 2 + 5 . Вычислить мгновенную скорость и ускорение точки в конце второй секунды после начала движения, среднюю скорость и пройденный за этот промежуток времени путь.

Дано: s = t 4 + 2 t 2 + 5 , t = 2 с.

Найти: s ; υ ; υ ; α .

Решение

s = 2 4 + 2 · 2 2 + 5 = 29 м.

υ = d s d t = 4 t 3 + 4 t = 4 · 2 3 + 4 · 2 = 37 м / с.

υ = ∆ s ∆ t = 29 2 = 14 , 5 м / с.

a = d υ d t = 12 t 2 + 4 = 12 · 2 2 + 4 = 52 м / с 2 .

Ответ: s = 29 м; υ = 37 м / с; υ = 14 , 5 м / с; α = 52 м / с 2

Пример 2

Задано тело, вращающееся вокруг неподвижной оси по уравнению φ = t 4 + 2 t 2 + 5 . Произвести вычисление мгновенной угловой скорости, углового ускорения тела в конце 2 секунды после начала движения, средней угловой скорости и угла поворота за данный промежуток времени.

Дано: φ = t 4 + 2 t 2 + 5 , t = 2 с.

Найти: φ ; ω ; ω ; ε .

Решение

φ = 2 4 + 2 · 2 2 + 5 = 29 р а д.

ω = d φ d t = 4 t 3 + 4 t = 4 · 2 3 + 4 · 2 = 37 р а д / с.

ω = ∆ φ ∆ t = 29 2 = 14 , 5 р а д / с.

ε = d ω d t = 12 2 + 4 = 12 · 2 2 + 4 = 52 р а д / с 2 .

Ответ: φ = 29 р а д; ω = 37 р а д / с; ω = 14 , 5 р а д / с; ε = 52 р а д / с 2 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Механика рассматривает всевозможные движения материальной точки и твердого тела. Все они описываются в нескольких разделах. К примеру, вопрос о том, как они движутся, будет прерогативой кинематики. В ней подробно описывается поступательное движение, а также более сложное - вращательное. Сначала о том, что проще. Потому что без этого сложно переходить к следующим темам.

Какие допущения позволяет механика?

Во многих задачах разрешено вводить приближение. Это связано с тем, что оно не окажет влияния на результат, зато упростит ход рассуждений.

Первое приближение связано с размерами тела. Если рассматриваемое тело существенно меньше других, находящихся с ним в одной системе отсчета, то его размерами пренебрегают. А само тело превращается в материальную точку.

Второе следует из отсутствия деформации у тела во время его перемещения. Или хотя бы настолько ее незначительной величины, которой вполне можно пренебречь.

В чем заключается поступательное движение тела?

Для пояснения потребуется рассмотреть две любые точки внутри твердого тела. Их нужно соединить отрезком. Если этот отрезок во время перемещения остается параллельным начальному положению, то говорят, что это - поступательное движение.

Если наблюдается пренебрежение размерами тела и рассматривается материальная точка, то отрезок отсутствует и она сама перемещается вдоль прямой.

Яркие примеры такого движения

Первое, о чем можно вспомнить — это кабина лифта. Она идеально иллюстрирует поступательное движение тела. Лифт всегда перемещается строго вверх или вниз без какого-либо вращения.

Следующим примером, иллюстрирующим поступательное движение, называют перемещение кабины колеса обозрения. Однако это реально только в ситуации, когда не учитывается небольшой наклон кабинки в начале каждого смещения.

Третья ситуация, когда можно говорить о поступательном движении, связана с движением педалей велосипеда. Их перемещение рассматривается относительно рамы. Здесь опять же вводится допущение, что ступни человека во время езды не качаются.

Завершить список можно перемещением поршней, которые колеблются внутри цилиндров двигателя внутреннего сгорания.

Главные понятия

Кинематика поступательного движения заключается в том, что изучает и описывает перемещение твердых тел и материальных точек. При этом она не рассматривает причины, которые тело к этому принуждают. Чтобы описать движение, потребуются координаты для указания его положения в пространстве. К тому же потребуется знание о скорости, причем в каждый конкретный момент времени.

Сначала стоит вспомнить о траектории. Она является линией, по которой двигалось тело.

Первым требуется ввести перемещение. Оно представляет собой вектор, который обозначается латинской буквой r. Он может соединять начало координат с положением материальной точки. В других случаях этот вектор проводится от начальной до конечной точки траектории. Единицы измерения перемещения — это метры.

Вторая величина, заслуживающая внимания, - путь. Он равен длине траектории, по которой двигалось тело. Обозначается путь буквой латинского алфавита S, которая тоже измеряется в метрах.

Основные формулы

Теперь настало время скорости. Она тоже является вектором. Причем характеризует не только направление движения тела, но и быстроту его перемещения. Вектор скорости всегда направлен вдоль касательной линии, которую можно провести к любой точке траектории. Обозначается она буквой V. Единицы ее измерения — м/с.
Скорость в каждое мгновение движения можно определить как производную перемещения по времени. Если в задаче идет речь о равномерном движении, то справедлива следующая формула:

  • V = S: t, где t — время движения.

В ситуации, когда направление движения изменяется, приходится использовать сумму всех перемещений.

Следующая величина — ускорение. Снова векторная величина, которая направлена в сторону скорости с большим значением. Определяется она как первая производная от скорости по времени. Принятое обозначение — буква «а». Размерность указывается в м/с 2 .

Формулы для каждой составляющей ускорения, направленных вдоль осей, вычисляется как отношение изменения скорости вдоль этой оси к промежутку времени. Если сделать математическую запись, то получится следующее:

  • а х = ∆V х: ∆t.

Для проекций ускорения на другие оси формулы аналогичны.
К тому же при рассмотрении движения по траектории с изгибами существует возможность разложить вектор ускорения на два слагаемых:

  • а = а t + а n , где а t — тангенциальное ускорение, направленное по касательной к изгибу, а n — нормальное, которое указывает на центр искривления.

Поступательное движение любого твердого тела сводится к тому, чтобы описать перемещение только одной его точки. Формулы, которыми нужно пользоваться, такие:

  • S = S 0 + V 0 t + (at 2) : 2.
  • V = V 0 + at.

В этой формуле индексами «ноль» обозначены начальные значения величин.

Теорема о величинах поступательного движения

Ее формулировка звучит так: траектория, скорость и ускорение всех точек тела одинаковы при его поступательном движении.

Для ее доказательства нужно записать формулу сложения векторов перемещения и вектора, соединяющего две произвольные точки. Траектории всех точек получаются благодаря их переносу вдоль второго вектора. А он не изменяет своего направления и величины с течением времени. Поэтому можно утверждать, что все точки тела движутся по одинаковым траекториям.

Если взять производную по времени, то получится значение скорости. Причем выражение упрощается до той степени, что скорости двух точек равны.
Поле второй производной по времени получается результат с равенством ускорений двух точек.