Графическое изображение электрического поля единичного заряда. Графическое изображение электростатического поля

1. Линии вектора . Для графического изображения электростатических полей используют линии вектора - они проводятся так, чтобы в каждой точке линии вектор был направлен по касательной к ней (рис.3.6). Линии нигде не пересекаются, они начинаются на положительных зарядах, заканчиваются на отрицательных или уходят в бесконечность. Примеры графического изображения полей точечных зарядов приведены на рис.3.6,б,в,г. Видно, что

для одного точечного заряда линии представляют собой прямые линии, выходящие или входящие в заряд. В случае однородного электрического поля (рис.3.6,д), в каждой точке которого вектор одинаков и по модулю, и по направлению, линии представляют собой прямые линии, параллельные друг другу и отстоящие друг от друга на одинаковом расстоянии.

Графическое изображение полей с помощью линий позволяет наглядно видеть направление кулоновской силы, действующей на точечный заряд, помещенный в данную точку поля, что является удобным для качественного анализа поведения заряда.

Обычно линии проводят так, чтобы их густота (количество линий, пронизывающих перпендикулярную к ним плоскую поверхность фиксированной площади) в каждой точке поля определяла числовое значение вектора . Поэтому по степени близости линий друг другу можно судить об изменении модуля и соответственно об изменении модуля кулоновской силы, действующей на заряженную частицу в электрическом поле.

2. Эквипотенциальные поверхности . Эквипотенциальная поверхность – это поверхность равного потенциала, в каждой точке поверхности потенциал φ остается постоянным. Поэтому элементарная работа по перемещению заряда q по такой поверхности будет равна нулю: . Из этого следует, что вектор в каждой точке поверхности будет перпендикулярен к ней, т.е. будет направлен по вектору нормали (рис.3.6,г). Действительно, если бы это было не так, то тогда существовала бы составляющая вектора (), направленная по касательной к поверхности, и, следовательно, потенциал в разных точках поверхности был бы разным ( ¹const), что противоречит определению эквипотенциальной поверхности.



На рис.3.6 приведено графическое изображение электрических полей с помощью эквипотенциальных поверхностей (пунктирные линии) для точечного заряда (рис.3.6,б,в, это сферы, в центре которых находится точечный заряд), для поля, созданного одновременно отрицательным и положительным зарядами (рис.3.6,г), для однородного электрического поля (рис.3.6,д, это плоскости, перпендикулярные к линиям ).

Условились проводить эквипотенциальные поверхности так, чтобы разность потенциалов между соседними поверхностями была одинаковой. Это позволяет наглядно видеть изменение потенциальной энергии заряда при его движении в электрическом поле.

Тот факт, что вектор перпендикулярен к эквипотенциальной поверхности в каждой ее точке, позволяет достаточно просто переходить от графического изображения электрического поля с помощью линий к эквипотенциальным поверхностям и наоборот. Так, проведя на рис.3.6,б,в,г,д пунктирные линии, перпендикулярные к линиям , можно получить графическое изображение поля с помощью эквипотенциальных поверхностей в плоскости рисунка.

Изображение электростатического поля с помощью векторов напряженности в различ­ных точках поля является очень не­удобным, так как картина получается весьма за­путанной. Фарадей предложил более простой и нагляд­ный метод изображения электростати­ческого поля с помощьюлиний напряженнос­тей или силовых линий . Силовыми линиями называ­ются кривые, касательные к которым в каждой точке совпадают с направлением векто­ра напря­женности поля (рис.1.2). Направление силовой линии совпадает с направле­нием . Си­ловые линии начинаются на положительных зарядах и оканчиваются на отрицатель­ных. Силовые линии не пересекаются, так как в каждой точке поля век­торимеет лишь одно направление. Электростатическое поле считается однородным, если напряженность во всех его точках одинакова по величине и направлению. Силовыми линиями такого поля являются прямые, параллельные вектору напряженности.

Силовые линии поля точечных зарядов - ради­альные прямые, выходящие из заряда и уходящие в бесконечность, если он положителен (рис.1.3а). Если за­ряд отрицателен, направление силовых линий ока­зы­вается обратным: они начинаются в бесконечности и оканчиваются на заряде -q (рис.1.3б). Поле точечных зарядов обладает центральной симметрией.

Рис.1.3. Линии напряженности точечных зарядов: а - поло­жительного, б - отрицатель­ного.

На рис.1.3 изображены плоские сечения электро­статических полей системы двух одинаковых по ве­ли­чине зарядов: а) заряды, одинаковые по знаку, б) заряды, разные по знаку.

1. 5. Принцип суперпозиции электростатических полей.

Основной задачей электростатики является определение величины и направ­ле­ния вектора напряженности в каждой точке поля, создаваемого либо системой неподвижных точечных зарядов, либо заряженными поверхностями произвольной формы. Рассмотрим первый случай, когда поле создано системой зарядовq 1 , q 2 ,..., q n . Если в какую-либо точку этого поля поместить пробный заряд q 0 , то на него со стороны зарядов q 1 , q 2 ,..., q n будут действовать кулоновские силы . Со­гласно принципу независимости действия сил, рассмотренного в механике, равно­дей­ствующая силаравна их векторной сумме

.

Используя формулу напряженности электростатического поля, левую часть ра­венства можно записать: , где- напряженность результирующего поля, создаваемого всей системой зарядов в точке, где расположен пробный зарядq 0 . Пра­вую часть равенства соответственно можно записать, где- напря­женность поля, создаваемая одним зарядомq i . Равенство примет вид . Сокращая наq 0 , получим .

Напряженность электростатического поля системы точечных зарядов равна векторной сумме напряженностей полей, создаваемых каждым из этих зарядов в отдельности. В этом заключается принцип независимости действия электростатических полей или принцип суперпозиции (наложения) полей .

Обозначим через радиус-вектор, проведенный из точечного зарядаq i в ис­следуемую точку поля. Напряженность поля в ней от заряда q i равна . Тогда результирующая напряженность, создаваемая всей системой зарядов равна. Полученная формула применима и для расчета электростатических полей за­ря­женных тел произвольной формы так как любое тело можно разделить на очень малые части, каж­дую из которых можно считать точечным зарядомq i . Тогда расчет в любой точке пространства будет аналогичен выше приведенному.

Зная вектор напряженности электростатического поля в каждой его точке, можно представить это поле наглядно с помощью силовых линий напряженности (линий вектора E →). Силовые линии напряженности проводят так, чтобы касательная к ним в каждой точке совпадала с направлением вектора напряженности E → (рис. 4, а).

Число линий, пронизывающих единичную площадку dS, перпендикулярную к ним, проводят пропорционально модулю вектора E → (рис. 4, б). Силовым линиям приписывают направление, совпадающее с направлением вектора E → . Полученная картина распределения линий напряженности позволяет судить о конфигурации данного электрического поля в разных его точках. Силовые линии начинаются на положительных зарядах и оканчиваются на отрицательных зарядах. На рис. 5 приведены линии напряженности точечных зарядов (рис. 5, а, б); системы двух разноименных зарядов (рис. 5, а б Рис. 4 Рис. 5 в) − пример неоднородного электростатического поля и двух параллельных разноименно заряженных плоскостей (рис. 5, г) − пример однородного электрического поля.

Теорема Остроградского–Гаусса и её применение.

Введем новую физическую величину, характеризующую электрическое поле – поток вектора напряженности электрического поля. Пусть в пространстве, где создано электрическое поле, расположена некоторая достаточно малая площадка , в пределах которой напряженность , т. е. электростатическое поле однородно. Произведение модуля вектора на площадь и на косинус угла между вектором и нормалью к площадке называется элементарным потоком вектора напряженности через площадку (рис. 10.7):

где - проекция поля на направление нормали .

Рассмотрим теперь некоторую произвольную замкнутую поверхность . В случае замкнутой поверхности всегда выбирается внешняя нормаль к поверхности, т. е. нормаль, направленная наружу области.

Если разбить эту поверхность на малые площадки, определить элементарные потоки поля через эти площадки, а затем их просуммировать, то в результате мы получим поток вектора напряженности через замкнутую поверхность (рис. 10.8):

. (10.9)

Рис. 10.7
Рис. 10.8

Теорема Остроградского-Гаусса утверждает: поток вектора напряженности электростатического поля через произвольную замкнутую поверхность прямо пропорционален алгебраической сумме свободных зарядов, расположенных внутри этой поверхности:

, (10.10)

где - алгебраическая сумма свободных зарядов, находящихся внутри поверхности , - объемная плотность свободных зарядов, занимающих объем .

Из теоремы Остроградского-Гаусса (10.10), (10.12) следует, что поток не зависит от формы замкнутой поверхности (сфера, цилиндр, куб и т.п.), а определяется только суммарным зарядом внутри этой поверхности.

Используя теорему Остроградского-Гаусса, можно в ряде случаев легко вычислить напряженность электрического поля заряженного тела, если заданное распределение зарядов обладает какой-либо симметрией.

Пример использования теоремы Остроградского-Гаусса . Рассмотрим задачу о вычислении поля тонкостенного пологооднородно заряженного длинного цилиндра радиуса (тонкой бесконечной заряженной нити). Эта задача имеет осевую симметрию. Из соображений симметрии электрическое поле должно быть направлено по радиусу. Выберем замкнутую поверхность в виде цилиндра произвольного радиуса и длины , закрытого с обоих торцов (рис. 10.9)

Тела или частицы, обладающие электрическим зарядом, создают в окружающем их пространстве электрическое поле, являющееся одним из двух компонентов электромагнитного поля.

Что такое электрическое поле

После того как тело получило заряд, оно способно действовать на другие заряженные тела: притягивать тела с противоположным зарядом и отталкивать их, если они имеют такой же заряд.

Каким же образом происходит такое взаимодействие?

Зарядим металлический шарик, закреплённый на металлической подставке. Точно такой же по знаку заряд сообщим другому шарику из пенопласта, подвешенному на нити. Назовём его пробным. Перемещая его на разные расстояния, увидим, что нить с шариком отклоняется в любой точке пространства. Этот способ исследования называется методом пробного заряда .

Почему отклоняется пробный шарик?

Причина в том, что электрические заряды взаимодействуют друг с другом с помощью электрического поля, которое они создают в окружающем их пространстве. - это особый вид материи, с помощью которого это взаимодействие и происходит. Такое поле окружает каждый электрический заряд и действует на другие заряды с некоторой силой. Следовательно, электрическое поле – разновидность силового поля.

Характеризуется электрическое поле физической величиной, которую называют напряжённостью электрического поля . Это количественная характеристика , векторная величина. Она равна отношению силы, действующей на точечный заряд в данной точке поля, к величине этого заряда:

где - напряжённость электрического поля;

Сила, действующая на точечный заряд;

q – величина заряда.

Точечным называют заряженное тело, размеры которого настолько малы, что ими можно пренебречь по сравнению с расстоянием, на котором рассматривается воздействие этого заряда. Электрические поля, создаваемые такими зарядами, называют кулоновскими полями .

Силы, действующие на пробный заряд в разных точках электрического поля, отличаются по величине и направлению. Соответственно, различны и напряжённости в этих точках поля. Такое поле называют неоднородным .

Если модуль и направление напряжённости электрического поля одинаковы во всех его точках, то такое поле называется однородным .

Однородное поле создаётся в центре между двумя параллельными заряженными пластинами.

Электростатическое поле

Электрическое поле, созданное неподвижным и не меняющимся во времени зарядом, называется электростатическим полем .

Если электрическое поле образовано несколькими зарядами, то напряжённость в данной точке пространства равна сумме напряжённостей электрических полей, создаваемых в этой точке каждым зарядом в отдельности.

Графическое изображение электрического поля

Графически электрическое поле изображают с помощью силовых линий.

Силовая линия – это такая линия, касательная к которой в каждой её точке совпадает с направлением вектора напряжённости в этой точке.

Начинаются силовые линии на положительных зарядах или на бесконечности и заканчиваются на отрицательных, либо уходят в бесконечность. Они никогда не пересекаются и не касаются друг друга.

Силовые линии указывают направление действия силы, которая действует на положительно заряженную частицу со стороны электрического поля.

В общем эти линии имеют форму кривых . Но они могут быть и прямыми линиями в случае, если описывается поле одиночного точечного заряда.

Силовые линии положительного точечного заряда уходят в бесконечность.

Силовые линии отрицательного точечного заряда начинаются в бесконечности.

Совокупность двух точечных зарядов, равных по величине, но противоположных по знаку, находящихся на некотором расстоянии друг от друга, называется электрическим диполем . В целом электрический диполь нейтрален.

Вот так выглядят силовые линии электрического диполя.

А вот так располагаются силовые линии двух одинаковых по знаку электрических зарядов.

Электростатический потенциал

Другой величиной, характеризующей электростатическое поле, является электростатический потенциал (точечный потенциал) . Это скалярная величина, равная отношению потенциальной энергии взаимодействия электрического заряда с полем к величине этого заряда. Электростатический потенциал – это энергетическая характеристика электрического поля:

В вакууме электростатический потенциал точечного заряда определяют по формуле:

где q - величина заряда, r - расстояние от заряда-источника до точки, для которой рассчитывается потенциал;

Напряжённость электрического поля связана с его потенциалом следующим отношением:

Так как электрическое поле является потенциальным полем, то работа, совершаемая при перемещении заряда q из точки 1 в точку 2, равна:

A = W 1 – W 2 = qψ 1 – qψ 2 = q(ψ 1 – ψ 2)

Разность потенциалов ( ψ 1 – ψ 2) в электростатическом поле называется электрическим напряжением :

U = ( ψ 1 – ψ 2) = A/ q

Электрическое поле, созданное электрическими зарядами, называют потенциальным . Его силовые линии начинаются на положительном заряде и заканчиваются на отрицательном. Электрическое поле, возникшее за счёт электромагнитной индукции, называется вихревым . Силовые линии такого поля замкнуты. Существуют комбинации потенциальных и вихревых полей.

Электрическое поле является одной из составляющих электромагнитного поля. Оно возникает не только вокруг электрических зарядов, но и при изменении магнитного поля.

В свою очередь, магнитное поле появляется при изменении электрического поля или создаётся током заряженных частиц.

а б

Зная вектор напряженности электростатического поля в каждой его точке, можно представить это поле наглядно с помощью силовых линий напряженности (линий вектора ). Силовые линии напряженности проводят так, чтобы касательная к ним в каждой точке совпадала с направлением вектора напряженности(рис. 1.4,а ).

Число линий, пронизывающих единичную площадку dS, перпендикулярную к ним, проводят пропорционально модулю вектора (рис. 1.4,б ).

Силовым линиям приписывают направление, совпадающее с направлением вектора . Полученная картина распределения линий напряженности позволяет судить о конфигурации данного электрического поля в разных его точках. Силовые линии начинаются на положительных зарядах и оканчиваются на отрицательных зарядах. На рис. 1.5 приведены линии напряженности точечных зарядов (рис. 1.5, а , б ); системы двух разноименных зарядов (рис. 1.5, в )  пример неоднородного электростатического поля и двух параллельных разноименно заряженных плоскостей (рис. 1.5, г )  пример однородного электрического поля.

1.5. Распределение зарядов

В некоторых случаях для упрощения математических расчетов истинное распределение точечных дискретных зарядов удобно заменить фиктивным непрерывным распределением. При переходе к непрерывному распределению зарядов используют понятие о плотности зарядов  линейной , поверхностной  и объемной , т. е.

(1.12)

где dq  заряд, распределенный соответственно по элементу длины
, элементу поверхностиdS и элементу объема dV.

С учетом этих распределений формула (1.11) может быть записана в другой форме. Например, если заряд распределен по объему, то вместо q i нужно использовать dq = dV, а символ суммы заменить интегралом, тогда

. (1.13)

1.6. Электрический диполь

Для объяснения явлений, связанных с зарядами в физике используется понятие электрического диполя .

Систему двух равных по величине разноименных точечных зарядов, расстояние между которыми много меньше расстояния до исследуемых точек пространства, называют электрическим диполем. Согласно определению диполя +q=q= q.

Прямую, соединяющую разноименные заряды (полюса), называют осью диполя; точку 0  центром диполя (рис. 1.6). Электрический диполь характеризуется плечом диполя : вектором , направленным от отрицательного заряда к положительному. Основной характеристикой диполя являетсяэлектрический дипольный момент = q. (1.14)

По абсолютной величине

р = q. (1.15)

В СИ электрический дипольный момент измеряется в кулонах умноженных на метр (Кл м).

Рассчитаем потенциал и напряженность электрического поля диполя, считая его точечным, если  r.

Потенциал электрического поля, созданного системой точечных зарядов в произвольной точке, характеризуемой радиусвектором , запишем в виде:

где r 1 r 2  r 2 , r 1  r 2  r =
, так как  r;   угол между радиус-векторами и (рис. 1.6). С учетом этого получим

. (1.16)

Используя формулу, связывающую градиент потенциала с напряженностью, найдем напряженность, создаваемую электрическим полем диполя. Разложим вектор электрического поля диполя на две взаимно перпендикулярные составляющие, т. е.
(рис. 1. 6).

Первая их них определяется движением точки, характеризуемой радиусвектором (при фиксированном значении угла), т. е. значение Е  найдем дифференцированием (1.81) по r, т. е.

. (1.17)

Вторая составляющая определяется движением точки, связанным с изменением угла  (при фиксированном r), т. е. Е  найдем дифференцированием (1.16) по :
, (1.18)

где
,d= rd.

Результирующая напряженность Е 2 = Е  2 + Е  2 или после подстановки
. (1.19)

Замечание : При  = 90 о
, (1.20)

т. е. напряженность в точке на прямой проходящей через центр диполя (т. О) и перпендикулярно оси диполя.

При  = 0 о
, (1.21)

т. е. в точке на продолжении прямой, совпадающей с осью диполя.

Анализ формул (1.19), (1.20), (1.21) показывает, что напряженность электрического поля диполя убывает с расстоянием обратно пропорционально r 3 , т. е. быстрее, чем для точечного заряда (обратно пропорционально r 2).