Что является скалярной величиной в физике. Векторная величина

При изучении различных разделов физики, механики и технических наук встречаются величины, которые полностью определяются заданием их числовых значений, более точно, которые полностью определяются при помощи числа, полученного в результате их измерения однородной величиной, принятой за единицу. Такие величины называются скалярными или, короче, скалярами. Ска­лярными величинами, например, являются длина, площадь, объ­ем, время, масса, температура тела, плотность, работа, электроёмкость и др. Так как скалярная величина определяется числом (положительным или отрицательным), то ее можно откладывать на соответствующей координатной оси. Так например, часто стро­ят ось времени, температуры, длины (пройденного пути) и другие.

Помимо скалярных величин, в различных задачах встречаются величины, для определения ко­торых, кроме числового значения, необходимо знать также их направление в пространстве. Такие величины называются векторными . Физиче­скими примерами векторных величин могут служить смещение материальной точки, двигающейся в пространстве, скорость и ускорение этой точки, а также действующая на нее сила, напряженность электрического или магнитного поля. Век­торные величины используются, например, и в климатологии. Рассмотрим простой пример из климатологии. Если мы скажем, что ветер дует со скоростью 10 м/с, то тем самым введем скаляр­ную величину скорости ветра, но если мы скажем, что дует се­верный ветер со скоростью 10 м/с, то в этом случае скорость ветра будет уже векторной величиной.

Векторные величины изображаются с помощью векторов.

Для геометрического изображения векторных величин слу­жат направленные отрезки, то есть отрезки, имеющие фикси­рованное направление в пространстве. При этом длина отрез­ка равна числовому значению векторной величины, а его на­правление совпадает с направлением векторной величины. Направленный отрезок, характеризующий данную векторную величину, называют геометрическим вектором или просто вектором.

Понятие вектора играет большую роль как в математике, так и во многих областях физики и механики. Многие физические величины могут быть представлены при помощи векторов, и это представление очень часто способствует обобщению и упрощению формул и результатов. Часто векторные величины и векторы, их изображающие, отождествляются друг с другом: так, например, говорят, что сила (или скорость) есть вектор.

Элементы векторной алгебры применяются в таких дисциплинах как: 1) электрические машины; 2) автоматизированный электропривод; 3) электроосвещение и облучение; 4) неразвлетвлённые цепи переменного тока; 5) прикладная механика; 6) теоретическая механика; 7) физика; 8) гидравлика:9) детали машин; 10) сопромат; 11) управление; 12) химия; 13) кинематика; 14) статика и др.

2. Определение вектора. Отрезок прямой задается дву­мя равноправными точками -его концами. Но можно рассматривать направленный отрезок, определяемый упо­рядоченной парой точек. Про эти точки известно, какая из них первая (начало), а какая вторая (конец).

Под направленным отрезком понимают упорядоченную пару точек, первая из которых - точка А - называется его началом, а вторая - В - его концом.

Тогда под вектором понимается в простейшем случае сам направленный отрезок, а в других случаях различные векторы - это разные классы эквивалентности направленных отрезков, определяемые неким конкретным отношением эквивалентности. Причем отношение эквивалентности может быть разным, определяя тип вектора («свободный», «фиксированный» и т.д.). Проще говоря, внутри класса эквивалентности все входящие в него направленные отрезки рассматриваются как совершенно равные, и каждый может равно представлять весь класс.

Большую роль играют векторы в изучении бесконечно малых трансформаций пространства.

Определение 1. Направленный отрезок (или, что то же, упорядоченную пару точек) мы будем называть вектором . Направление на отрезке принято отмечать стрелкой. Над буквенным обозначением вектора при письме ста­вится стрелка, например: (при этом буква, соответст­вующая началу вектора, обязательно ставится впереди). В книгах часто буквы, обозначающие вектор, набираются полужирным шрифтом, например: а .

К векторам будем относить и так называемый нулевой вектор, у которого начало и конец совпадают.

Вектор, начало которого совпадает с его концом, называют нулевым. Нулевой вектор обозначается или просто 0.

Расстояние между началом и концом вектора называ­ется его длиной (а также модулем и абсолютной величи­ной). Длина вектора обозначается | | или | |. Длиной вектора, или модулем вектора, называют длину соответствующего направленного отрезка: | | = .

Векторы называются коллинеарными , если они распо­ложены на одной прямой или на параллельных прямых, короче говоря, если существует прямая, которой они параллельны.

Векторы называются компланарными , если существует плоскость, которой они параллельны, их можно изобразить векторами, лежащими на одной плоскости. Нулевой вектор считается коллинеарным любому вектору, так как он не имеет определенного направления. Длина его, разумеется, равна нулю. Очевидно, любые два вектора компланарны; но, конечно, не каждые три вектора в пространстве компланарны. Так как векторы, параллельные друг другу, параллельны одной и той же плоскости, то коллинеарные векторы подавно компланарны. Разумеется, обратное неверно: компланарные векторы могут быть и не коллинеарными. В силу принятого выше условия нулевой вектор коллинеарен со всяким вектором и компланарен со всякой парой векторов, т.е. если среди трёх векторов хотя бы один нулевой, то они компланарны.

2) Слово «компланарные» означает в сущности: «имеющие общую плос­кость», т. е. «расположенные в одной плоскости». Но так как речь здесь идет о свободных векторах, которые можно переносить (не изменяя длины и направ­ления) произвольным образом, мы должны называть компланарными векторы, параллельные одной и той же плоскости, ибо в этом случае их можно пере­нести так, чтобы они оказались расположенными в одной плоскости.

Для сокращения речи условимся в одном термине: если несколько свободных векторов параллельны одной и той же плоскости, то мы будем говорить, что они компланарны. В частности, два вектора всегда компланарны; чтобы в этом убе­диться, достаточно отложить их от одной и той же точки. Ясно, далее, что направление плоскости, в которой параллельны два дан­ных вектора, вполне определено, если эти два вектора не парал­лельны между собою. Любую плоскость, которой параллельны данные компланарные векторы, мы будем называть просто пло­скостью данных векторов.

Определение 2. Два вектора называются равными , если они коллинеарны, одинаково направлены и имеют равные длины.

Необходимо всегда помнить, что равенство длин двух векторов ещё не означает равенства этих векторов.

По самому смыслу определения, два вектора, порознь равные третьему, равны между собой. Очевидно, все нулевые векторы равны между собой.

Из этого определения непосредственно вытекает, что, выбрав любую точку А", мы может построить (и притом только один) вектор А" В", равный некоторому заданному вектору , или, как говорят, перенести вектор в точку А" .

Замечание . Для векторов нет понятий «больше» или «меньше», т.е. они равны или не равны.

Вектор, длина которого равна единице, называется единичным вектором и обозначается через е. Единичный вектор, направление которого совпадает с направлением вектора а, называется ортом вектора и обозначается а .

3. О другом определении вектора . Заметим, что понятие равенства векторов существенно отличается от понятия равенства, например, чисел. Каждое число равно только самому себе, иначе говоря, два равных числа при всех обстоятельствах могут рассматриваться как одно и то же число. С векторами, как мы видим, дело обстоит по-другому: в силу определения существуют различные, но равные между собой векторы. Хотя в большинстве случаев у нас не будет необходимости различать их между собой, вполне может оказаться, что в какой-то момент нас будет интересовать именно вектор , а не другой, равный ему вектор А"В".

Для того чтобы упростить понятие равенства векторов (и снять некоторые связанные с ним трудности), иногда идут на усложнение определения вектора. Мы не будем пользоваться этим усложненным определением, но сформулируем его. Чтобы не путать, мы будем писать «Вектор» (с большой буквы) для обозначения определяемого ниже понятия.

Определение 3 . Пусть дан направленный отрезок. Множество всех направленных отрезков, равных данному в смысле определения 2, называется Вектором.

Таким образом, каждый направленный отрезок определяет Век­тор. Легко заметить, что два направленных отрезка определяют один и тот же Вектор тогда и только тогда, когда они равны. Для Векторов, как и для чисел, равенство означает совпадение: два Вектора равны в том и только в том случае, когда это один и тот же Век­тор.

При параллельном переносе пространства точка и ее образ сос­тавляют упорядоченную пару точек и определяют направленный отрезок, причем все такие направленные отрезки равны в смысле определения 2. Поэтому параллельный перенос пространства можно отождествить с Вектором, составленным из всех этих направленных отрезков.

Из начального курса физики хорошо известно, что сила может быть изображена направленным отрезком. Но она не может быть изображена Вектором, поскольку силы, изображаемые равными нап­равленными отрезками, производят, вообще говоря, различные дейст­вия. (Если сила действует на упругое тело, то изображающий ее направленный отрезок не может быть перенесён даже вдоль той прямой, на которой он лежит.)

Это только одна из причин, по которым наряду с Векторами, т. е. множествами (или, как говорят, классами) равных направлен­ных отрезков, приходится рассматривать и отдельных представителей этих классов. При этих обстоятельствах применение определения 3 усложняется большим числом оговорок. Мы будем придерживаться определения 1, причем по общему смыслу всегда будет ясно, идет ли речь о вполне определенном векторе, или на его место может быть подставлен любой, ему равный.

В связи с определением вектора стоит разъяснить значение не­которых слов, встречающихся в литературе.

Величинам (строго говоря - тензорам ранга 2 и более). Также может противопоставляться тем или иным объектам совершенно другой математической природы.

В большинстве случаев термин вектор употребляется в физике для обозначения вектора в так называемом «физическом пространстве», то есть в обычном трёхмерном пространстве классической физики или в четырехмерном пространстве-времени в современной физике (в последнем случае понятие вектора и векторной величины совпадают с понятием 4-вектора и 4-векторной величины).

Употребление словосочетания «векторная величина» практически исчерпывается этим. Что же касается употребления термина «вектор», то оно, несмотря на тяготение по умолчанию к этому же полю применимости, в большом количестве случаев всё же весьма далеко выходит за такие рамки. Об этом см. ниже.

Энциклопедичный YouTube

    1 / 3

    Урок 8. Векторные величины. Действия над векторами.

    ВЕКТОР - что это такое и зачем он нужен, объяснение

    ИЗМЕРЕНИЕ ФИЗИЧЕСКИХ ВЕЛИЧИН 7 класс | Романов

    Субтитры

Употребление терминов вектор и векторная величина в физике

В целом в физике понятие вектора практически полностью совпадает с таковым в математике. Однако есть терминологическая специфика, связанная с тем, что в современной математике это понятие несколько излишне абстрактно (по отношению к нуждам физики).

В математике, произнося «вектор» понимают скорее вектор вообще, то есть любой вектор любого сколько угодно абстрактного линейного пространства любой размерности и природы, что, если не прилагать специальных усилий, может приводить даже к путанице (не столько, конечно, по существу, сколько по удобству словоупотребления). Если же необходимо конкретизировать, в математическом стиле приходится или говорить довольно длинно («вектор такого-то и такого-то пространства»), или иметь в виду подразумеваемое явно описанным контекстом.

В физике же практически всегда речь идет не о математических объектах (обладающих теми или иными формальными свойствами) вообще, а об определенной их конкретной («физической») привязке. Учитывая эти соображения конкретности с соображениями краткости и удобства, можно понять, что терминологическая практика в физике заметно отличается от математической. Однако она не входит с последней в явное противоречие. Этого удается достичь несколькими простыми «приемами». Прежде всего, к ним относится соглашение об употребление термина по умолчанию (когда контекст особо не оговаривается). Так, в физике, в отличие от математики, под словом вектор без дополнительных уточнений обычно понимается не «какой-то вектор любого линейного пространства вообще», а прежде всего вектор, связанный с «обычным физическим пространством» (трехмерным пространством классической физики или четырехмерным пространством-временем физики релятивистской). Для векторов же пространств, не связанных прямо и непосредственно с «физическим пространством» или «пространством-временем», как раз применяют специальные названия (иногда включающие слово «вектор», но с уточнением). Если вектор некоторого пространства, не связанного прямо и непосредственно с «физическим пространством» или «пространством-временем» (и которое трудно сразу как-то определенно охарактеризовать), вводится в теории, он часто специально описывается как «абстрактный вектор».

Всё сказанное еще в большей степени, чем к термину «вектор», относится к термину «векторная величина». Умолчание в этом случае еще жестче подразумевает привязку к «обычному пространству» или пространству-времени, а употребление по отношению к элементам абстрактных векторных пространств скорее практически не встречается, по крайней мере, такое применение видится редчайшим исключением (если вообще не оговоркой).

В физике векторами чаще всего, а векторными величинами - практически всегда - называют векторы двух сходных между собою классов:

Примеры векторных физических величин: скорость , сила , поток тепла.

Генезис векторных величин

Каким образом физические «векторные величины» привязаны к пространству? Прежде всего, бросается в глаза то, что размерность векторных величин (в том обычном смысле употребления этого термина, который разъяснен выше) совпадает с размерностью одного и того же «физического» (и «геометрического») пространства, например, пространство трехмерно и вектор электрического поля трехмерен. Интуитивно можно заметить также, что любая векторная физическая величина, какую бы туманную связь она не имела с обычной пространственной протяженностью, тем не менее имеет вполне определенное направление именно в этом обычном пространстве.

Однако оказывается, что можно достичь и гораздо большего, прямо «сведя» весь набор векторных величин физики к простейшим «геометрическим» векторам, вернее даже - к одному вектору - вектору элементарного перемещения, а более правильно было бы сказать - произведя их всех от него.

Эта процедура имеет две различные (хотя по сути детально повторяющие друг друга) реализации для трехмерного случая классической физики и для четырехмерной пространственно-временной формулировки, обычной для современной физики.

Классический трехмерный случай

Будем исходить из обычного трехмерного «геометрического» пространства, в котором мы живем и можем перемещаться.

В качестве исходного и образцового вектора возьмем вектор бесконечно малого перемещения. Довольно очевидно, что это обычный «геометрический» вектор (как и вектор конечного перемещения).

Заметим теперь сразу, что умножение вектора на скаляр всегда дает новый вектор. То же можно сказать о сумме и разности векторов. В этой главе мы не будем делать разницы между полярными и аксиальными векторами , поэтому заметим, что и векторное произведение двух векторов дает новый вектор.

Также новый вектор дает дифференцирование вектора по скаляру (поскольку такая производная есть предел отношения разности векторов к скаляру). Это можно сказать дальше и о производных всех высших порядков. То же верно по отношению к интегрированию по скалярам (времени, объему).

Теперь заметим, что, исходя из радиус-вектора r или из элементарного перемещения dr , мы легко понимаем, что векторами являются (поскольку время - скаляр) такие кинематические величины, как

Из скорости и ускорения, умножением на скаляр (массу), появляются

Поскольку нас сейчас интересуют и псевдовекторы, заметим, что

  • с помощью формулы силы Лоренца напряженность электрического поля и вектор магнитной индукции привязаны к векторам силы и скорости.

Продолжая эту процедуру, мы обнаруживаем, что все известные нам векторные величины оказываются теперь не только интуитивно, но и формально, привязаны к исходному пространству. А именно все они в некотором смысле являются его элементами, так как выражаются в сущности как линейные комбинации других векторов (со скалярными множителями, возможно, и размерными, но скалярными, а поэтому формально вполне законными).

Современный четырехмерный случай

Ту же процедуру можно проделать исходя из четырехмерного перемещения. Оказывается, что все 4-векторные величины «происходят» от 4-перемещения, являясь поэтому в некотором смысле такими же векторами пространства-времени, как и само 4-перемещение.

Виды векторов применительно к физике

  • Полярный или истинный вектор - обычный вектор.
  • Аксиальный вектор (псевдовектор) - на самом деле не является настоящим вектором, однако формально почти не отличается от последнего, за исключением того, что меняет направление на противоположное при изменении ориентации системы координат (например, при зеркальном отражении системы координат). Примеры псевдовекторов: все величины, определяемые через векторное произведение двух полярных векторов.
  • Для сил выделяется несколько различных

В математике вектор - это направленный отрезок определенной длины. В физике под векторной величиной понимают полную характеристику некоторой физической величины, которая обладает модулем и направлением действия. Рассмотрим основные свойства векторов, а также примеры физических величин, которые являются векторными.

Скаляры и вектора

Скалярные величины в физике являются параметрами, которые могут быть измерены и представлены одним числом. Например, температура, масса и объем являются скалярами, поскольку они измеряются числом градусов, килограмм и кубических метров соответственно.

В большинстве же случаев оказывается, что число, определяющее скалярную величину, не несет исчерпывающей информации. Например, рассматривая такую физическую характеристику, как ускорение, будет недостаточно сказать, что оно равно 5 м/с 2 , поскольку нужно знать, куда оно направлено, против скорости движения тела, под некоторым углом к этой скорости или иначе. Помимо ускорения, примером векторной величины в физике является скорость. Также в эту категорию входят сила, напряженность электрического поля и многое другие.

Согласно определению векторной величины как направленного в пространстве отрезка, она может быть представлена в виде набора чисел (компонент вектора), если ее рассматривать в определенной системе координат. Чаще всего в физике и математике возникают задачи, которые для описания вектора требуют знания его двух (задачи на плоскости) или трех (задачи в пространстве) компонентов.

Определение вектора в n-мерном пространстве

В n-мерном пространстве, где n - целое число, вектор будет однозначно определен, если известны его n компонент. Каждая компонента представляет собой координату конца вектора вдоль соответствующей оси координат при условии, что начало вектора находится в начале системы координат n-мерного пространства. В итоге вектор может быть представлен так: v = {a 1 , a 2 , a 3 , ..., a n }, где a 1 - скалярное значение 1-й компоненты вектора v. Соответственно, в 3-х мерном пространстве вектор запишется как v = {a 1 , a 2 , a 3 }, а в 2-х мерном - v = {a 1 , a 2 }.

Как обозначается векторная величина? Любой вектор в 1-мерном, 2-мерном и 3-мерном пространствах можно представить как направленный отрезок, лежащий между точками A и B. В этом случае он обозначается как AB → , где стрелка показывает, что речь идет о векторной величине. Последовательность букв принято указывать от начала вектора к его концу. Это означает, что если координаты точек A и B, например, в 3-мерном пространстве, равны {x 1 , y 1 , z 1 } и {x 2 , y 2 , z 2 } соответственно, тогда компоненты вектора AB → будут равны {x 2 -x 1 , y 2 -y 1 , z 2 -z 1 }.

Графическое представление вектора

На рисунках принято изображать векторную величину в виде отрезка, на его конце имеется стрелочка, указывающая направление действия физической величины, представлением которой она является. Этот отрезок обычно подписывают, например, v → или F → , чтобы было понятно, о какой характеристике идет речь.

Графическое представление вектора помогает понять, куда приложена и в каком направлении действует физическая величина. Кроме того, многие математические операции над векторами удобно совершать, используя их изображения.

Математические операции над векторами

Векторные величины, так же как и обычные числа, можно складывать, вычитать и умножать как друг с другом, так и с другими числами.

Под суммой двух векторов понимают третий вектор, который получается, если суммируемые параметры расположить так, чтобы конец первого совпадал с началом второго вектора, а затем, соединить начало первого и конец второго. Для выполнения этого математического действия разработаны три основных метода:

  1. Метод параллелограмма, заключающийся в построении геометрической фигуры на двух векторах, которые выходят из одной и той же точки пространства. Диагональ этого параллелограмма, которая выходит из общей точки начала векторов, будет являться их суммой.
  2. Метод многоугольника, суть которого состоит в том, что начало каждого последующего вектора следует располагать в конце предыдущего, тогда суммарный вектор будет соединять начало первого и конец последнего.
  3. Аналитический метод, который состоит в попарном сложении соответствующих компонент известных векторов.

Что касается разницы векторных величин, то ее можно заменить сложением первого параметра с тем, который противоположен по направлению второму.

Умножение вектора на некоторое число A выполняется по простому правилу: на это число следует умножить каждую компоненту вектора. В результате получается также вектор, модуль которого в A раз больше исходного, а направление либо совпадает, либо противоположно исходному, все зависит от знака числа A.

Делить вектор или число на него нельзя, а вот деление вектора на число A аналогично умножению на число 1/A.

Скалярное и векторное произведения

Умножение векторов можно выполнять двумя различными способами: скалярно и векторно.

Скалярным произведением векторных величин называется такой способ их умножения, результатом которого является одно число, то есть скаляр. В матричном виде скалярное произведение записывается как строки компонента 1-го вектора на столбец компонент 2-го. В итоге в n-мерном пространстве получается формула: (A → *B →) = a 1 *b 1 +a 2 *b 2 +...+a n *b n .

В 3-мерном пространстве можно определить скалярное произведение иначе. Для этого нужно умножить модули соответствующих векторов на косинус угла между ними, то есть (A → *B →) = |A → |*|B → |*cos(θ AB). Из этой формулы следует, что если вектора направлены в одном направлении, то скалярное произведение равно умножению их модулей, а если вектора перпендикулярны друг другу, тогда оно оказывается равным нулю. Отметим, что модуль вектора в прямоугольной системе координат определяется как квадратный корень от суммы квадратов компонент этого вектора.

Под векторным произведением понимают такое умножение вектора на вектор, результатом которого также является вектор. Его направление оказывается перпендикулярно каждому из умножаемых параметров, а длина равна произведению модулей векторов на синус угла между ними, то есть A → x B → = |A → |*|B → |*sin(θ AB), где значок "x" обозначает векторное произведение. В матричном виде этот вид произведения представляется как определитель, строками которого являются элементарные вектора данной системы координат и компоненты каждого вектора.

Как скалярное, так и векторное произведения используют в математике и физике для определения многих величин, например, площади и объема фигур.

Скорость и ускорение

Под скоростью в физике понимают быстроту изменения местоположения данной материальной точки. Измеряется скорость в системе СИ в метрах в секунду (м/с), а обозначается символом v → . Под ускорением понимают быстроту изменения скорости. Ускорение измеряется в метрах в квадратную секунду (м/с 2), а обозначается обычно символом a → . Значение 1 м/с 2 говорит о том, что за каждую секунду тело увеличивает свою скорость на 1 м/с.

Скорость и ускорение - это векторные величины, которые участвуют в формулах второго закона Ньютона и перемещения тела как материальной точки. Скорость всегда направлена вдоль направления движения, ускорение же может быть направлено произвольным образом относительно движущегося тела.

Физическая величина сила

Сила - векторная физическая величина, которая отражает интенсивность взаимодействия между телами. Обозначается она символом F → , измеряется в ньютонах (Н). По определению, 1 Н - это сила, способная за каждую секунду времени изменять скорость тела, имеющего массу 1 кг, на 1 м/с.

Эта физическая величина широко применяется в физике, поскольку с ней связаны энергетические характеристики процессов взаимодействия. Природа силы может быть самой разной, например, гравитационные силы планет, сила, которая заставляет двигаться автомобиль, упругие силы твердых сред, электрические силы, описывающие поведение электрических зарядов, магнитные, ядерные силы, которые обуславливают стабильность атомных ядер, и так далее.

Векторная величина давление

С понятием силы тесно связана другая величина - давление. Под ним в физике понимают нормальную проекцию силы на площадку, на которую она действует. Поскольку сила является вектором, то, согласно правилу умножения числа на вектор, давление также будет векторной величиной: P → = F → /S, где S - площадь. Давление измеряется в паскалях (Па), 1 Па - это параметр, при котором перпендикулярная сила в 1 Н действует на поверхность площадью 1 м 2 . Исходя из определения, вектор давления направлен в том же направлении, что и вектор силы.

В физике понятие давления часто используется при изучении явлений в жидкостях и газах (например, закон Паскаля или уравнение состояния идеального газа). Давление тесно связано с температурой тела, поскольку кинетическая энергия атомов и молекул, представлением которой является температура, объясняет природу существования самого давления.

Напряженность электрического поля

Вокруг любого заряженного тела существует электрическое поле, силовой характеристикой которого является его напряженность. Определяется эта напряженность как сила, действующая в данной точке электрического поля на единичный заряд, помещенный в эту точку. Обозначается напряженность электрического поля буквой E → и измеряется в ньютонах на кулон (Н/Кл). Вектор напряженности направлен вдоль силовой линии электрического поля в ее направлении, если заряд положительный, и против нее, если заряд отрицательный.

Напряженность электрического поля, создаваемого точечным зарядом, можно определить в любой точке, используя закон Кулона.

Магнитная индукция

Магнитное поле, как показали в XIX веке ученые Максвелл и Фарадей, тесно связано с электрическим полем. Так, изменяющееся электрическое поле порождает магнитное, и наоборот. Поэтому оба вида полей описываются в рамках электромагнитных физических явлений.

Магнитная индукция описывает силовые свойства магнитного поля. Магнитная индукция - величина скалярная или векторная? Понять это можно, зная, что она определяется через силу F → , действующую на заряд q, который пролетает со скоростью v → в магнитном поле, согласно следующей формуле: F → = q*|v → x B → |, где B → - магнитная индукция. Таким образом, отвечая на вопрос, величина скалярная или векторная - магнитная индукция, можно сказать, что это вектор, который направлен от северного магнитного полюса к южному. Измеряется B → в теслах (Тл).

Физическая величина кандела

Еще одним примером векторной величины является кандела, которая вводится в физику через световой поток, измеряемый в люменах, проходящий через поверхность, ограниченную углом в 1 стерадиан. Кандела отражает яркость света, поскольку показывает плотность светового потока.

Пугающие школьника два слова - вектор и скаляр - на самом деле не являются страшными. Если подойти к теме с интересом, то все можно понять. В данной статье рассмотрим, какая величина является векторной, а какая скалярной. Точнее, приведем примеры. Каждый ученик, наверное, обращал внимание, что в физике некоторые величины обозначаются не только символом, но и стрелкой сверху. Что они обозначают? Об этом будет сказано ниже. Постараемся разобраться, чем отличается от скалярной.

Примеры векторов. Как они обозначаются

Что подразумевается под вектором? То, что характеризует движение. Не важно, в пространстве или на плоскости. Какая величина является векторной вообще? Например, летит самолет с определенной скоростью на какой-то высоте, имеет конкретную массу, начал движение из аэропорта с нужным ускорением. Что относится к движению самолета? Что заставило его лететь? Конечно, ускорение, скорость. Векторные величины из курса физики являются наглядными примерами. Говоря прямо, векторная величина связана с движением, перемещением.

Вода тоже движется с определенной скоростью с высоты горы. Видите? Движение осуществляется за счет не объема или массы, а именно скорости. Теннисист дает возможность мячику двигаться при помощи ракетки. Он задает ускорение. К слову сказать, приложенная в данном случае сила также является векторной величиной. Потому что она получается вследствие заданных скоростей и ускорений. Сила способна также меняться, осуществлять конкретные действия. Ветер, который колышет листья на деревьях, тоже можно считать примером. Так как имеется скорость.

Положительные и отрицательные величины

Векторной величиной называется величина, которая имеет направление в окружающем пространстве и модуль. Снова появилось пугающее слово, на этот раз модуль. Представьте, что нужно решить задачку, где будет фиксироваться отрицательное значение ускорения. В природе отрицательных значений, казалось бы, не существует. Как скорость может быть отрицательной?

У вектора есть такое понятие. Это касается, например, сил, которые приложены к телу, но имеют разные направления. Вспомните третий где действие равно противодействию. Ребята перетягивают канат. Одна команда в синих футболках, вторая - в желтых. Вторые оказываются сильнее. Допустим, что вектор их силы направлен положительно. В то же время у первых не получается натянуть канат, но пытаются. Возникает противодействующая сила.

Векторная или скалярная величина?

Поговорим о том, чем отличается векторная величина от скалярной. Какой параметр не имеет никакого направления, но имеет свое значение? Перечислим некоторые скалярные величины ниже:


Имеют ли все они направление? Нет. Какая величина является векторной, а какая скалярной, можно показать только наглядными примерами. В физике есть такие понятия не только в разделе "Механика, динамика и кинематика", а так же в параграфе "Электричество и магнетизм". Сила Лоренца, - все это так же векторные величины.

Вектор и скаляр в формулах

В учебниках по физике часто встречаются формулы, в которых есть стрелочка сверху. Вспомните второй закон Ньютона. Сила ("F" со стрелочкой сверху) равна произведению массы ("m") и ускорения ("a" со стрелочкой сверху). Как говорилось выше, сила и ускорение являются величинами векторными, а вот масса - скалярной.

К сожалению, не во всех изданиях есть обозначение этих величин. Наверное, сделано это для упрощения, чтобы школьников не вводить в заблуждение. Лучше всего покупать те книги и справочники, в которых обозначены векторы в формулах.

То, какая величина является векторной, покажет иллюстрация. Рекомендуется обращать внимание на картинки и схемы на уроках физики. Векторные величины имеют направление. Куда направлена Конечно же, вниз. Значит, стрелочка будет показана в том же направлении.

В технических вузах изучают физику углубленно. В рамках многих дисциплин преподаватели рассказывают о том, какие величины являются скалярными и векторными. Такие знания требуются в сферах: строительство, транспорт, естественные науки.

Векторы мощный инструмент математики и физики. На языке векторов формулируются основные законы механики и электродинамики. Чтобы понимать физику, нужно научиться работать с векторами.

Данная глава содержит подробное изложение материала, необходимого для того, чтобы приступить к изучению механики:

! Сложение векторов

! Умножение скаляра на вектор

! Угол между векторами

! Проекция вектора на ось

! Векторы и координаты на плоскости

! Векторы и координаты в пространстве

! Скалярное произведение векторов

К тексту данного приложения полезно будет вернуться на первом курсе при изучении аналитической геометрии и линейной алгебры чтобы осознать, например, откуда берутся аксиомы линейного и евклидова пространства.

7.1 Скалярные и векторные величины

В процессе изучения физики мы встречаем два типа величин скалярные и векторные.

Определение. Скалярная величина, или скаляр это физическая величина, для задания которой (в подходящих единицах измерения) достаточно одного числа.

Скаляров очень много в физике. Масса тела равна 3 кг, температура воздуха равна 10 С, напряжение в сети равно 220 В. . . Во всех этих случаях интересующая нас величина задаётся одним-единственным числом. Следовательно, масса, температура и электрическое напряжение являются скалярами.

Но скаляр в физике это не просто число. Скаляр есть число, снабжённое размерностью1 . Так, задавая массу, мы не можем написать m = 3; надо указать единицу измерения например, m = 3 кг. И если в математике мы можем сложить числа 3 и 220, то в физике сложить 3 килограмма и 220 вольт не получится: мы имеем право складывать лишь те скаляры, которые обладают одинаковой размерностью (массу с массой, напряжение с напряжением и т. д.).

Определение. Векторная величина, или вектор это физическая величина, характеризуемая: 1) неотрицательным скаляром; 2) направлением в пространстве. При этом скаляр называется модулем вектора, или его абсолютной величиной.

Предположим, что автомобиль движется со скоростью 60 км/ч. Но ведь это неполная информация о движении, не так ли? Может оказаться важным и то, куда едет автомобиль, в каком именно направлении. Поэтому важно знать не только модуль (абсолютную величину) скорости автомобиля в данном случае это 60 км/ч но и её направление в пространстве. Значит, скорость является вектором.

Другой пример. Допустим, на полу лежит кирпич массой 1 кг. На кирпич действует сила 100 Н (это модуль силы, или её абсолютная величина). Как будет двигаться кирпич? Вопрос лишён смысла до тех пор, пока не указано направление действия силы. Если сила действует вверх, то и кирпич будет двигаться вверх. Если сила действует горизонтально, то и кирпич поедет горизонтально. А если сила действует вертикально вниз, то кирпич вообще не сдвинется с места он будет только вжиматься в пол. Мы видим, таким образом, что сила также является вектором.

Векторная величина в физике также обладает размерностью. Размерность вектора это размерность его модуля.

Мы будем обозначать векторы буквами со стрелкой. Так, вектор скорости можно обозначить

через ~v, а вектор силы через F . Собственно, вектор это и есть стрелка или, как ещё говорят, направленный отрезок (рис. 7.1 ).

Рис. 7.1. Вектор ~v

Начальная точка стрелки называется началом вектора, а конечная точка (остриё) стрелки

концом вектора. В математике вектор с началом в точке A и концом в точке B обозначается

также AB; нам такое обозначение тоже иногда понадобится.

Вектор, начало и конец которого совпадают, называется нулевым вектором (или нулём) и

обозначается ~ . Нулевой вектор есть попросту точка; он не имеет определённого направления.

Длина нулевого вектора, разумеется, равна нулю.

1 Попадаются и безразмерные скаляры: коэффициент трения, коэффициент полезного действия, показатель преломления среды. . . Так, показатель преломления воды равен 1;33 это исчерпывающая информация, никакой размерностью данное число не обладает.

Рисование стрелок полностью решает задачу графического представления векторных величин. Направление стрелки указывает направление данного вектора, а длина стрелки в подходящем масштабе есть модуль этого вектора.

Предположим, например, что два автомобиля двигаются навстречу друг другу со скоростями u = 30 км/ч и v = 60 км/ч. Тогда векторы ~u и ~v скоростей автомобилей будут иметь противоположные направления, причём длина вектора ~v в два раза больше (рис. 7.2 ).

Рис. 7.2. Вектор ~v вдвое длиннее

Как вы уже поняли, буква без стрелки (например, u или v в предыдущем абзаце) обозначает модуль соответствующего вектора. В математике модуль вектора ~v обычно обозначается j~vj, но физики, если ситуация позволяет, предпочтут именно v букву без стрелки.

Векторы называются коллинеарными, если они расположены на одной прямой или на параллельных прямых.

Пусть имеются два коллинеарных вектора. Если их направления совпадают, то векторы называются сонаправленными; если же их направления различны, то векторы называются противоположно направленными. Так, выше на рис. 7.2 векторы ~u и ~v являются противоположно направленными.

Два вектора называются равными, если они сонаправлены и имеют равные модули (рис. 7.3 ).

Рис. 7.3. Векторы ~a и b равны: ~a = b

Таким образом, равенство векторов отнюдь не означает непременного совпадения их начал и концов: мы можем переносить вектор параллельно самому себе, и при этом получится вектор, равный исходному. Такой перенос постоянно применяется в тех случаях, когда желательно свести начала векторов в одну точку например, при нахождении суммы или разности векторов. К рассмотрению операций над векторами мы и переходим.