Распределение заряда в заряженном проводнике. Распределение электрического заряда по поверхности уединённого проводника

Все вещества в соответствии с их способностью проводить электрический ток подразделяются на проводники, диэлектрики и полупроводники. Проводниками называют вещества, в которых электрически заряженные частицы - носители заряда - способны свободно перемещаться по всему объему вещества. К проводникам относятся металлы, растворы солей, кислот и щелочей, расплавленные соли, ионизированные газы.

Ограничим рассмотрение твердыми металлическими проводниками, имеющими кристаллическую структуру. Эксперименты показывают, что при очень малой разности потенциалов, приложенной к проводнику, содержащиеся в нем электроны проводимости, приходят в движение и перемещаются по объему металлов практически свободно.

В отсутствие внешнего электростатического поля электрические поля положительных ионов и электронов проводимости взаимно скомпенсированы, так что напряженность внутреннего результирующего поля равна нулю.

При внесении металлического проводника во внешнее электростатическое поле с напряженностью Е 0 на ионы и свободные электроны начинают действовать кулоновские силы, направленные в противоположные стороны. Эти силы вызывают смещение заряженных частиц внутри металла, причем в основном смещаются свободные электроны, а положительные ионы, находящиеся в узлах кристаллической решетки, практически не меняют своего положения. В результате внутри проводника возникает электрическое поле с напряженностью Е " .

Смещение заряженных частиц внутри проводника прекращается тогда, когда суммарная напряженность поля Е в проводнике, равная сумме напряженностей внешнего и внутреннего полей, станет равной нулю:

Представим выражение, связывающее напряженность и потенциал электростатического поля, в следующем виде:

где Е - напряженность результирующего поля внутри проводника; n - внутренняя нормаль к поверхности проводника. Из равенства нулю результирующей напряженности Е следует, что в пределах объема проводника потенциал имеет одно и то же значение:

Полученные результаты позволяют сделать три важных вывода:

  • 1. Во всех точках внутри проводника напряженность поля, т. е. весь объем проводника эквипотенциален.
  • 2. При статическом распределении зарядов по проводнику вектор напряженности Ена его поверхности должен быть направлен по нормали к поверхности

3. Поверхность проводника также эквипотенциальна, так как для любой точки поверхности

3. Проводники во внешнем электростатическом поле

Если проводнику сообщить избыточный заряд, то этот заряд распределится по поверхности проводника. Действительно, если внутри проводника выделить произвольную замкнутую поверхность S, то поток вектора напряженности электрического поля через эту поверхность должен быть равен нулю. В противном случае внутри проводника будет существовать электрическое поле, что приведет к перемещению зарядов. Следовательно, для того, чтобы выполнялось условие

суммарный электрический заряд внутри этой произвольной поверхности должен равняться нулю.

Напряженность электрического поля вблизи поверхности заряженного проводника можно определить, используя теорему Гаусса. Для этого выделим на поверхности проводника малую произвольную площадку dS и, считая ее за основание, построим на ней цилиндр с образующей dl (рис. 3.1). На поверхности проводника вектор Е направлен по нормали к этой поверхности. Поэтому поток вектора Е через боковую поверхность цилиндра из-за малости dl равен нулю. Поток этого вектора через нижнее основание цилиндра, находящееся внутри проводника, также равен нулю, так как внутри проводника электрическое поле отсутствует. Следовательно, поток вектора Е через всю поверхность цилиндра равен потоку через его верхнее основание dS " :

где Е n - проекция вектора напряженности электрического поля на внешнюю нормаль n к площадке dS.

По теореме Гаусса, этот поток равен алгебраической сумме электрических зарядов, охватываемых поверхностью цилиндра, отнесенной к произведению электрической постоянной и относительной диэлектрической проницаемости среды, окружающей проводник. Внутри цилиндра находится заряд

где - поверхностная плотность зарядов. Следовательно

т. е. напряженность электрического поля вблизи поверхности заряженного проводника прямо пропорциональна поверхностной плотности электрических зарядов, находящихся на этой поверхности.

Экспериментальные исследования распределения избыточных зарядов на проводниках различной формы показали, что распределение зарядов на внешней поверхности проводника зависит только от формы поверхности: чем больше кривизна поверхности (чем меньше радиус кривизны), тем больше поверхностная плотность заряда.

Вблизи участков с малыми радиусами кривизны, особенно около острия, из-за высоких значений напряженности происходит ионизация газа, например, воздуха. В результате одноименные с зарядом проводника ионы движутся в направлении от поверхности проводника, а ионы противоположного знака к поверхности проводника, что приводит к уменьшению заряда проводника. Это явление получило название стекания заряда. электрический ток проводник статический

На внутренних поверхностях замкнутых полых проводников избыточные заряды отсутствуют.

Если заряженный проводник привести в соприкосновение с внешней поверхностью незаряженного проводника, то заряд будет перераспределяться между проводниками до тех пор, пока их потенциалы не станут равными.

Если же тот же заряженный проводник касается внутренней поверхности полого проводника, то заряд передается полому проводнику полностью.

Эта особенность полых проводников была использована американским физиком Робертом Ван-де-Граафом для создания в 1931г. электростатического генератора, в котором высокое постоянное напряжение создается посредством механического переноса электрических зарядов. Наиболее совершенные электростатические генераторы позволяют получать напряжение величиной до 15-20 МВ.

В заключение отметим еще одно явление, присущее только проводникам. Если незаряженный проводник поместить во внешнее электрическое поле, то его противоположные части в направлении поля будут иметь заряды противоположных знаков. Если, не снимая внешнего поля, проводник разделить, то разделенные части будут иметь разноименные заряды. Это явление получило название электростатической индукции.

1. Электростатика -- это раздел физики, где изучаются свойства и взаимодействия неподвижных относительно инерциальной системы отсчета электрически заряженных тел или частиц, которые имеют электрический заряд.

Основание электростатики положили работы Кулона, хотя за десять лет до него такие же результаты, даже с ещё большей точностью, получил Кавендиш. Самую существенную часть электростатики составляет теория потенциала, созданная Грином и Гауссом.

2. Все вещества в соответствии с их способностью проводить электрический ток подразделяются на проводники, диэлектрики и полупроводники. Проводниками называют вещества, в которых электрически заряженные частицы - носители заряда - способны свободно перемещаться по всему объему вещества. К проводникам относятся металлы, растворы солей, кислот и щелочей, расплавленные соли, ионизированные газы.

Во всех точках внутри проводника напряженность поля, т. е. весь объем проводника эквипотенциален.

При статическом распределении зарядов по проводнику вектор напряженности Ена его поверхности должен быть направлен по нормали к поверхности

в противном случае под действием касательной к поверхности проводника компоненты напряженности заряды должны перемещаться по проводнику.

Поверхность проводника также эквипотенциальна, так как для любой точки поверхности

Распределение зарядов на проводнике. Проводник во внешнем электрическом поле.

Под словом «проводник» в физике понимается проводящее тело любых размеров и формы, содержащее свободные заряды (электроны или ионы). Для определенности в дальнейшем будем рассматривать металлы.

Если проводнику сообщить некоторый заряд q, то он распределится так, чтобы соблюдалось условие равновесия (т.к. одноименные заряды отталкиваются, они располагаются на поверхности проводника).


1.
Если заряды проводника находятся в равновесии, то равнодействующая всех сил, действующих на каждый заряд, равна нулю:

т.к. а Е=0, то

в любой точке внутри проводника Е=0.

2. Т.к.

во всех точках внутри проводника потенциал постоянен.

3. Т.к. при равновесии заряды не движутся по поверхности проводника, то работа по их перемещению равна нулю:

т.е. поверхность проводника является эквипотенциальной.

4. Т.к. линии вектора перпендикулярны эквипотенциальным поверхностям, линии перпендикулярны поверхности проводника.

5. Согласно теореме Гаусса

Если S - поверхность заряженного проводника, то внутри нее E=0,

т.е. заряды располагаются на поверхности проводника.

6. Выясним, как связана поверхностная плотность заряда с кривизной поверхности.

Для заряженной сферы

Плотность зарядов определяется кривизной поверхности проводника: растет с увеличением положительной кривизны (выпуклости) и убывает с увеличением отрицательной кривизны (вогнутости). Особенно велика на острие. При этом имеющиеся в воздухе в небольшом количестве ионы обоих знаков и электроны разгоняются вблизи острия сильным полем и ударяясь об атомы газа, ионизируют их. Создается область пространственного заряда, откуда ионы того же знака, что и острие, выталкиваются полем, увлекая за собой атомы газа. Поток атомов и ионов, направленный от острия, создает впечатление «стекания зарядов». При этом острие разрежается попадающими на него ионами противоположного знака. Возникающее при этом ощутимое движение газа у острия называют «электрическим ветром».

Проводник во внешнем электрическом поле:

При внесении незаряженного проводника в электрическое поле его электроны (свободные заряды) приходят в движение, на поверхности проводника появляются индуцированные заряды, поле внутри проводника равно нулю. Это используют для электростатической защиты, т.е. экранировки электро- и радиоприборов (и человека) от влияния электростатических полей. Прибор окружают проводящим экраном (сплошным или в виде сетки). Внешнее поле компенсируется внутри экрана полем возникающих на его поверхности индуцированных зарядов.

ПРОВОДНИКИ В ЭЛЕКТРОСТАТИЧЕСКОМ ПОЛЕ

§1 Распределение заряда в проводнике.

Связь между напряженностью поля у поверхности проводника и поверхностной плотностью заряда

Следовательно, поверхность проводника при равновесии зарядов является эквипотенциальной.

При равновесии зарядов ни в каком месте внутри проводника не может быть избыточных зарядов - все они распределены по поверхности проводника с некоторой плотностью σ.

Рассмотрим замкнутую поверхность в форме цилиндра, образующие которого перпендикулярны поверхности проводника. На поверхности проводника расположены свободные заряды с поверхностной плотностью σ.

Т.к. внутри проводника зарядов нет, то поток через поверхность цилиндра внутри проводника равен нулю. Поток через верхнюю часть цилиндра вне проводника по теореме Гаусса равен

т.е. вектор электрического смещения равен поверхностной плотности свободных зарядов проводника или

2. При внесении незаряженного проводника во внешнее электростатическое поле свободные заряды начнут перемещаться: положительные - по полю, отрицательные - против поля. Тогда с одной стороны проводника будут накапливаться положительные, а с другой отрицательные заряды. Эти заряды называются ИНДУЦИРОВАННЫМИ . Процесс перераспределения зарядов будет происходить до тех пор, пока напряженность внутри проводника не станет равной нулю, а линии напряженности вне проводника перпендикулярны его поверхности. Индуцированные заряды появляются на проводнике вследствие смещения, т.е. являются поверхностной плотностью смещенных зарядов и т.к. то поэтому назвали вектором электрического смещения.

§2 Электроемкость проводников.

Конденсаторы

  1. УЕДИНЕННЫМ называется проводник, удаленный от других проводников, тел, зарядов. Потенциал такого проводника прямо пропорционален заряду на нем

Из опыта следует, что разные проводники, будучи одинаково заряженными Q 1 = Q 2 приобретает различные потенциалы φ 1 ¹ φ 2 из-за различной формы, размеров и окружающей проводник среды (ε). Поэтому для уединенного проводника справедлива формула

где - емкость уединенного проводника . Емкость уединенного проводника равна отношению заряда q , сообщение которого проводнику изменяет его потенциал на 1 Вольт.

В системе SI емкость измеряется в Фарадах

Емкость шара


Рассчитаем емкость плоского конденсатора с площадью пластин S , поверхностной плотностью заряда σ, диэлектрической проницаемостью ε диэлектрика между пластинами, расстоянием между пластинами d . Напряженность поля равна

Используя связь Δφ и Е , находим

Емкость плоского конденсатора.

Для цилиндрического конденсатора:

Для сферического конденсатора

Т.к. при некоторых значениях напряжения в диэлектрике наступает пробой (электрический разряд через слой диэлектрика), то для конденсаторов существует пробивное напряжение. Пробивное напряжение зависит от формы обкладок, свойств диэлектрика и его толщины.

  1. Емкость при параллельном и последовательном соединении конденсаторов

а) параллельное соединение

По закону сохранения заряда

б) последовательное соединение

По закону сохранения заряда

§3 Энергия электростатического поля

  1. Энергия системы неподвижных точечных зарядов

Электростатическое поле является потенциальным. Силы, действующие между зарядами - консервативные силы. Система неподвижных точечных зарядов должна обладать потенциальной энергией. Найдем потенциальную энергию двух неподвижных точечных зарядов q 1 и q 2 , находящихся на расстоянии r друг от друга.

Потенциальная энергия заряда q 2 в поле, создаваемом

зарядом q 1 , равна

Аналогично, потенциальная энергия заряда q 1 в поле, создаваемом зарядом q 2 , равна

Видно, что W 1 = W 2 , тогда обозначив потенциальную энергию системы зарядов q 1 и q 2 через W , можно записать

Идеальной физической моделью заряда в электростатике является точечный заряд.

Точечным зарядом называется заряд, сосредоточенный на теле, размерами которого можно пренебречь по сравнению с расстоянием до других тел или до рассматриваемой точки поля. Иными словами, точечный заряд - это материальная точка, которая имеет электрический заряд.

Если заряженное тело настолько велико, что его нельзя рассматривать как точечный заряд, то в этом случае необходимо знать распределение зарядов внутри тела.

Выделим внутри заряженного тела малый объем и обозначим через электрический заряд, находящийся в этом объеме. Предел отношения , когда объем неограниченно уменьшается, называют объемной плотностью электрического заряда в данной точке . Обозначают ее буквой :

Единицей объемной плотности заряда в СИ является кулон на кубический метр (Кл/м 3).

В случае неравномерно заряженного тела плотность различна в разных точках. Распределение заряда в объеме тела задано, если известно как функция координат.

В металлических телах заряды распределяются только внутри тонкого слоя, прилегающего к поверхности. В этом случае удобно пользоваться поверхностной плотностью заряда , которая представляет собой предел отношения заряда к площади поверхности, по которой распределен этот заряд:

где - заряд, находящийся на участке поверхности площадью .

Следовательно, поверхностная плотность заряда измеряется зарядом, приходящимся на единицу поверхности тела. Распределение зарядов по поверхности описывается зависимостью поверхностной плотности (x, y, z) от координат точек поверхности.

Единицей поверхностной плотности заряда в СИ является кулон на квадратный метр (Кл/м 2).

В том случае, если заряженное тело по форме представляет собой нить (диаметр поперечного сечения тела много меньше его длины , удобно использовать линейную плотность заряда

где - заряд, находящийся на длине тела.

Единицей линейной плотности заряда в СИ является кулон на метр (Кл/м).

Если известно распределение зарядов внутри тела, то можно вычислить напряженность электростатического поля, создаваемого этим телом. Для этого заряженное тело мысленно разбивают на бесконечно малые части и, рассматривая их как точечные заряды, вычисляют напряженность поля, создаваемую отдельными частями тела. Суммарную напряженность поля находят затем суммированием полей, создаваемых отдельными частями тела, т.е.

    Он будет находиться в пол-ной безопасности внутри металличес-кой кабины, если не будет пытаться из нее выйти, пока внешняя ее часть не будет разряжена или не обесточе-на сеть. Пассажиры самолета нахо-дятся в безопасности, когда в него ударяет молния, потому что заряд проводится вокруг внешней части фю-зеляжа в низлежащую атмосферу. Были проделаны опыты, в ходе ко-торых к крыше автомобиля, проез-жающего мимо высоковольтного ге-нератора, прилагался потенциал 1 млн. В. Несмотря на громадный заряд между генератором и автомобилем, водитель мог повторно продемонстрировать опыт без какого-либо ущерба и для себя, и для автомобиля. Эти экспе-рименты показывают, что заряд рас-полагается на внешней поверхности проводника.


    Примечание.

    Это относится в рав-ной степени и к полым, и к монолит-ным проводникам, и, конечно, к изо-ляторам.

    Если некоторый отрицательный за-ряд помещен на металлическую сфе-ру, находящуюся на изолирующей подставке, как на рисунке 1, а, то отрицательные заряды взаимооттал- киваются и перемещаются через ме-талл. Электроны распределяются, по-ка каждая точка на сфере не под-нимается до одинакового отрицатель-ного потенциала; перераспределение заряда затем прекращается. Все точ-ки заряженной сферы должны иметь одинаковый потенциал, поскольку ес-ли бы этого не произошло, то между различными точками на проводнике должна была бы существовать раз-ность потенциалов. Это бы вызывало движение зарядов, до тех пор покуда потенциалы не уравнялись бы. Заря-женный проводник вне зависимости от его формы должен, таким образом, иметь одинаковый потенциал во всех точках как на, так и внутри его по-верхности. Проводник цилиндричес-кой формы на рисунке 1, б имеет постоянный положительный потенци-ал во всех точках его поверхности. Точно так же отрицательно заря-женный проводник грушевидной фор-мы на рисунке 1, в имеет постоянный отрицательный потенциал но всей его поверхности. Итак, заряд распре-деляется таким образом, что потен-циал является однородным по всему проводнику. На телах правильной формы, такой, как сфера, распреде-ление заряда будет равномерным или однородным. На телах же неправильной формы, таких, какие показаны на рисунке 1, б и в, нет рав-номерного распределения заряда по их поверхности. Заряд, который на-капливается в любой данной точке на поверхности, зависит от кривизны поверхности в этой точке. Чем боль-ше кривизна, т. е. чем меньше ради-ус, тем больше заряд. Таким обра-зом, большая концентрация заряда присутствует на «заостренном» конце грушеобразного проводника, чтобы поддерживать во всех точках по-верхности одинаковый потенциал.


    Подобные же эксперименты могут быть проведены для проверки распре-деления заряда по поверхностям проводников различной формы. Вы долж-ны обнаружить, что заряженная сфе-ра имеет однородное распределение заряда по своей поверхности.

    Если вы присоедините тонко за-остренный проводник к высоковольт-ной электропередаче, т. е. вставите его в свод генератора Ван-де-Граафа, то вы сможете ощутить «электричес-кий ветер», держа руку в нескольких сантиметрах от заостренного конца проводника, как на рисунке 2, а. Высокая концентрация положитель-ного заряда на острие проводника бу-дет притягивать отрицательные заря-ды (электроны) до тех пор, пока за-ряд не нейтрализуется. В то же время положительные ионы в воздухе оттал-киваются положительным зарядом на острие. Среди молекул воздуха в ком-нате всегда присутствуют положи-тельные ионы (молекулы газов, из ко-торых состоит воздух, потерявшие один-два электрона) и некоторое чис-ло отрицательных ионов («потерян-ные» электроны). На рисунке 2, б показано движение заряда в воздухе, т. е. положительно заряженные ионы, отталкиваемые от положительно за-ряженного острого проводника, и от-рицательно заряженные ионы, притя-гиваемые к нему. Притяжение отрицательных зарядов (электронов) к по-ложительно заряженному острию ней-трализует положительные заряды на острие и, следовательно, понижает его положительный потенциал. Та-ким образом, заряженный проводник разряжается путем, известным как разряд — стекание заряда с острия. Положительные заряды, которые устремляются прочь от точечного проводника,— это положительные ио-ны (почти молекулы воздуха), и имен-но это создает движение воздуха, или «ветер».

    Примечание.

    Этот процесс непре-рывен, потому что к куполу генера-тора Ван-де-Граафа постоянно до-бавляется заряд от генератора. Это объяснение показывает, что заострен-ный проводник очень хорошо подхо-дит для собирания заряда, так же как и для поддержания большой кон-центрации заряда.

    Громоотвод

    Важным применением стекания заряда с острия является громоотвод. Движение облаков в атмосфере может образовывать на облаке громадный статический заряд. Это возрастание заряда может быть столь велико, что разность потенциалов между облаком и землей (нулевым потенциалом) ста-новится достаточно большой для то-го, чтобы преодолеть изолирующие свойства воздуха. Когда это проис-ходит, то воздух становится проводя-щим и заряд течет к земле в виде вспышки молнии, ударяя в ближай-шие или наиболее высокие здания или же в присутствующие объекты, т. е. заряд выбирает кратчайший путь к земле. Никогда не укрывайтесь под деревьями во время грозы: молния может ударить в дерево и ранить или убить вас, когда она устремляется вниз по дереву к земле. Лучше всего стать на колени на открытом месте, как можно ниже опустив голову и положив руки на колени, направив их пальцами к земле. Если молния и уда-рит в вас, то она должна ударить в ваши плечи, пройти вниз по вашим рукам и из ваших пальцев в землю. Таким образом, это положение защи-щает вашу голову и жизненно важ-ные органы, такие, как сердце.

    Если вспышка молнии ударила бы в здание, то мог бы быть нанесен большой ущерб. Громоотвод же мо-жет предохранить здание от этого. Громоотвод состоит из некоторого числа заостренных проводников, ук-репленных на высокой точке здания и соединенных с толстой медной про-волокой, которая проходит по одной из стен вниз и оканчивается на ме-таллической пластине, закопанной в земле. Когда положительно заряжен-ное облако проходит над зданием, происходит разделение равных и про-тивоположных по знаку зарядов в медной проволоке при высокой кон-центрации отрицательных зарядов на остриях проводников и положитель-ном заряде, который стремится акку-мулироваться на металлической плас-тине. Земля, однако, имеет громадный запас отрицательного заряда, и поэ-тому, как только образуется положи-тельный заряд на пластине, он немедленно нейтрализуется отрицательны-ми зарядами (электронами), исходя-щими из земли. Электроны также при-тягиваются из земли вверх к за-остренным концам проводника под воздействием положительного потен-циала на облаке. На остриях может сконцентрироваться очень высокий электрический заряд, и это способ-ствует уменьшению положительного потенциала облака, тем самым умень-шая для него возможность преодо-леть изолирующие свойства воздуха. Заряженные ионы воздуха также дви-жутся в «электрическом ветре»; от-рицательные заряды (электроны) от-талкиваются остриями и притягиваются облаком, также помогая пони-зить положительный его потенциал, т. е. разрядить облако. Положитель-ные ионы воздуха притягиваются по-ложительно заряженными заострен-ными проводниками, но громадные запасы отрицательного заряда в зем-ле могут предоставить неограничен-ный отрицательный заряд остриям, чтобы нейтрализовать их. Если мол-ния и ударит в проводник, то она пошлет свой электрический заряд че-рез проводник и «безопасно» в землю.