Движение электронов в электрическом и магнитном полях. Движение электрона в электрическом или магнитном поле

Движение электрона в равномерном магнитном поле, неизменном во времени и направленном перпендикулярно скорости. Под заряженной частицей мы будем подразумевать электрон. Заряд его обозначим q =- q э и массу m . Заряд примем равным q э =1,601 . 10 -19 Кл, при скорости движения, значительно меньшей скорости света, масса m =0,91 . 10 -27 г. Допустим, что электрон движется в достаточно высоком вакууме, так что при движении электрон не сталкивается с другими частицами. На электрон, движущийся со скоростью в магнитном поле индукции, действует сила Лоренца

Учтем, что заряд электрона отрицателен, и скорость его направлена по оси y , а индукция по оси- x . Сила направлена перпендикулярно скорости и является центробежной силой. Она изменяет направление скорости, не влияя на числовое значение (см. рис.1)

Электрон будет двигаться по окружности радиусом r с угловой частотой, которую называют циклотронной частотой. Центробежное ускорение равно силе f , деленной на массу

Период равен

Следовательно

Движение электрона в неизменном во времени магнитном поле, когда скорость электрона не перпендикулярна силовым линиям

Рассмотрим два случая:

а) Движение в равномерном поле. На рис 2. обозначен угол между скоростью электрона и индукцией. Разложим на, направленную по и численно равную, и на, направленную перпендикулярно и численно равную. Так как, то наличие составляющей скорости не вызывает силы воздействия на электрон. Движение со скоростью приводит к вращению электрона вокруг линии подобно тому, как это было рассмотрено в первом пункте. В целом электрон будет двигаться по спирали. Осевой линией которой является линия магнитной индукции. Поступательное и одновременно вращательное движение называют дрейфовым движением. Радиус спирали шаг спирали

б) Движение в неравномерном поле. Если магнитное поле неравномерно, например сгущается (рис.2 в.), то при движении по спирали электрон будет попадать в точки поля, где индукция В увеличивается. Но чем больше индукция В, тем при прочих равных условиях меньше радиус спирали r . Дрейф электрона будет происходить в этом случае по спирали со всем уменьшающимся радиусом. Если бы

магнитные силовые линии образовывали расходящийся пучок, то электрон при своем движении попадал бы в точки поля со все уменьшающейся индукцией и радиус спирали возрастал бы

Фокусировка пучка электронов по¬стоянным во времени магнитным полем (магнитная линза)

Из катода электронного прибора (рис. 3) выходит расходящийся пучок электронов. Со скоростью электроны входят в неравномерное магнитное поле узкой цилиндрической катушки с током

Разложим скорость электрона в произвольной точке т на две составляю¬щие: и

Первая направлена противоположно, а вторая -перпендикулярно. Возникшая ситуация повторяет ситуацию, рассмотренную в пункте 2. Электрон нач¬нет двигаться по спирали, осью которой является. В результате электронный пучок фокусируется в точке b .

Движение электронов в равномерном электрическом поле. Принцип работы электронного осциллографа

Электрон, пройдя расстояние от катода К до узкого отверстия в аноде А (рис. 4, а), под действием ускоряющего напря¬жения U ак увеличивает свою кинетическую энергию на величину работы сил по¬ля

Скорость с которой электрон будет двигаться после выхода в аноде из отверстия 0, найдем из соотношения

При дальнейшем прямолинейном движении по оси х электрон попадает в равномерное электрическое поле, напряженностью Е между отклоняющими пластинами 1 и 2 (находятся в плоскостях, параллельных плоскости z ох).

Напряженность Е направлена вдоль оси у. Пока электрон движется между от¬клоняющимися пластинами, на него действует постоянная сила Fy = - q э E . направленная но оси -у. Под действием этой силы электрон движется вниз рав¬ноускоренно, сохраняя постоянную скорость вдоль оси х. В результате в про¬странстве между отклоняющими пластинами электрон движется по параболе. Когда он выйдет из поля пластин 1-2. в плоскости уох он будет двигаться по касательной к пара¬боле. Далее он попадает в поле пластин 3-4 , которые создают развертку во времени. Напряже¬ние U 31 между пластинами 3-4 и напряженность поля между ними E 1 линейно нарастают во времени (рис. 4, б). Электрон получает отклонение в направлении оси z , что и даст развертку во времени

Фокусировка пучка электронов по
стоянным во времени электриче¬ским полем (электрическая линза)

Фокусировка основана на том что, проходя через участок неравномерного электрического поля, электрон отклоняется в сто¬рону эквипотенциали с большим значением потенциала (рис. 5, а). Электриче¬ская линза образована катодом, испускающим электроны, анодом, куда пучок электронов приходит сфокусированным, и фокусирующей диафрагмой, пред¬ставляющей собой пластинку с круглым отверстием в центре (рис. 5, б). Диа¬фрагма имеет отрицательный потенциал по отношению к окружающим ее точ¬кам пространства, вследствие этого эквинотенциали электрического поля как бы выпучиваются через

диафрагму по направлению к катоду. Электроны, проходя через отверстие в диафрагме и отклоняясь в сторону, фокусируются на аноде

Движение электрона в равномерных, взаимно перпендикулярных, неизменных во времени магнитном и электрическом полях

Пусть электрон с зарядом q = - q э, и массой т с начальной скоростью оказался при t = 0 в начале, координат (рис. 6, а) в магнитном и электрическом полях. Магнитная индукция направлена по оси т. е. B x = B . Напряжен¬ность электрического поля направлена по оси, т. е. . Дви¬жение электрона будет происходить в плоскости zoy со скоростью

Уравнение движения или

Следовательно, ;

В соответствии с формулой (2) заменим q э B / m на циклотронную частоту  ц. Тогда

Продифференцируем (4) по t и в правую часть уравнения подставим (5)

Решим уравнение классическим методом: v y = v y пр + v y св:

Составим два уравнения для определения постоянных интегрирования

Так как при t =0 v y = v , то. При t =0 v z =0. Поэтому или. Отсюда и

Таким образом,

Пути, пройденные электроном по осям у и z:

На рис. 6, б, в, г изображены три характерных случая движения при различных значениях v 0 . На рис. 6, б трохоида при v 0 =0, максимальное от¬клонение по оси z равно.

трохоида (рис. 6, в) с максимальным отклонением

Когда магнитное и электрическое поля мало отличаются от равномерных, траектории движения электронов близки к трохоидам

Движение заряженных частиц в кольцевых ускорителях

Циклотрон – это две полые камеры в виде полуцилиндров из проводящего неферромагнитного материала. Эти камеры находятся в сильном равномерном маг¬нитном поле индукции, направленном сверху вниз (рис. 7). Камеры по¬мещают в вакуумированный сосуд и присоединяют к ис¬точнику напряжения U m cos (t). При t =0, когда напряжение между камерами имеет максимальное значение, а потенциал левой камеры положителен по отношению к правой, в пространство между камерами вводят положительный заряд q . На него будет действовать сила. Заряд начнет двигаться слева направо и с начальной скоростью пойдет и правую камеру. Внутри камеры напряжен¬ность электрического поля равна нулю. Поэтому, пока он находится там, на не¬го не действует сила, но действует сила, обусловленная магнитным полем. Под действием этой силы положительный заряд, двигающийся со скоростью v , начинает

движение по окружности радиусом. Время, в течение которого он совершит пол-оборота, .

Если частоту приложенного между камерами напря¬жения взять равной, то к тому времени, когда заряд выйдет из правой камеры, он окажется под воздействием электрического поля, на¬правленного справа налево. Под действием этого поля заряд увеличивает свою скорость и входит в левую камеру, где совершает следующий полуоборот, но уже большего радиуса, так как имеет боль¬шую скорость. После k полуоборотов заряженная частица приобретает такую скорость и энергию, ка¬кую она приобрела бы, если в постоянном электриче¬ском поле пролетела между электродами, раз¬ность потенциалов между которыми kU m Вывод заряда из циклотрона осуществляется с помощью постоянного электрического поля, созда¬ваемого между одной из камер (на рис. 7 пра¬вой) и вспомогательным электродом. С увеличением скорости, она становится соизмеримой со скоростью света. Масса частицы во много раз увеличивается. Возрастает и время t 1 , прохождения полуоборота. Поэтому одновременно с увеличением скорости частицы необходимо уменьшать либо частоту источника напряжения U m cos (t) (фазотрон), либо величину индукции магнитного поля (синхротрон), либо частоту и индукцию (синхрофазотро

В некоторых электронных приборах используется влияние магнитного поля на движущиеся в нем электроны.

В § 3-2, в было получено выражение (3-6) для силы, с которой однородное магнитное поле действует на электрон, движущийся перпендикулярно направлению поля. Величина этой силы пропорциональна произведению магнитной индукции В, заряда электрона и скорости его движения v в направлении, перпендикулярпом направлению поля, т. е. Там же было установлено, что направление этой силы определяется по правилу левой руки.

Из выражения силы (3-6) следует, что при сила , т. е. магнитное поле на неподвижный электрон не действует. Так как направление силы F перпендикулярно направлению скорости движения электрона, то работа, совершаемая ею, равна нулю. Таким образом, энергия электрона и величина его скорости остаются неизменными, а изменяется только направление движения электрона.

Если на электрон действует только магнитное поле, то он будет перемещаться по окружности радиуса (рис. 13-4), расположенной в плоскости, перпендикулярной направлению ноля.

Сила F является центростремительной и уравновешивается центробежной силой электрона .

Так как эти силы равны, то можно написать

откуда определяется радиус, окружности

Отношение массы электрона к его заряду постоянно, следовательно, радиус окружности пропорционален скорости движения электрона и обратно пропорционален магнитной индукции поля.

Рис. 13-4. Движение электрона в магнитном поле при начальной скорости v в плоскости, перпендикулярной вектору магнитной индукции поля.

Рис. 13-5. Движение электрона в магнитном поле при начальной скорости, направленной под острым углом к вектору магнитной индукции поля.

Если начальная скорость электрона не перпендикулярна направлению поля, то ее следует разложить на две составляющие: нормальную, т. е. перпендикулярную к направлению поля и продольную, т. е. совпадающую по направлению с полем (рис. 13-5).

Первая составляющая скорости обусловливает движение электрона по окружности в плоскости, перпендикулярной к направлению поля, вторая составляющая обусловливает равномерное и прямолинейное движение электрона в направлении поля, таким образом, движение электрона происходит по винтовой линии (рис. 13-5).

Пример первый: пусть сначала имеется постоянное поле в направлении . Ему соответствуют два стационарных состояния с энергиями . Добавим небольшое поле в направлении . Тогда уравнения получатся такими же, как в нашей старой задаче о двух состояниях. Опять, в который раз, получается знакомый уже нам переброс, и уровни энергии немного расщепляются. Пусть, далее, -компонента поля начнет меняться во времени, скажем, как . Тогда уравнения станут такими, как для молекулы.аммиака и колеблющемся электрическом пале (см. гл. 7). И тем же способом, что и прежде, вы можете рассчитать процесс во всех деталях. При этом вы увидите, что колеблющееся поле приводит к переходам от -состояния к -состоянию и обратно, если только горизонтальное поле колеблется с частотой, близкой к резонансной, . Это приводит к квантовомеханической теории явлений магнитного резонанса, описанной нами в гл. 35 (вып. 7).

Можно еще сделать мазер, в котором используется система со спином . Прибор Штерна - Герлаха создает пучок частиц, поляризованных, скажем, в направлении , и они потом направляются в полость, находящуюся в постоянном магнитном поле. Колеблющиеся в полости поля, взаимодействуя с магнитным моментом, вызовут переходы, которые будут снабжать полость энергией.

Рассмотрим теперь второй пример. Пусть у нас имеется магнитное поле , направление которого характеризуется полярным углом и азимутальным углом (фиг. 8.10). Допустим еще, что имеется электрон, спин которого направлен по полю. Чему равны амплитуды и для этого электрона? Иными словами, обозначая состояние электрона , мы хотим написать

,

где и равны

а и обозначают то же самое, что раньше обозначалось и (по отношению к выбранной нами оси ).

Ответ на этот вопрос также содержится в наших общих уравнениях для систем с двумя состояниями. Во-первых, мы знаем, что раз спин электрона параллелен , то электрон находится в стационарном состоянии с энергией . Поэтому и , и должны изменяться как [см. уравнение (7.18)]; и их коэффициенты и даются формулой (8.5):

Вдобавок и должны быть нормированы так, чтобы было . Величины и мы можем взять из (8.22), используя равенства

Тогда мы имеем

(8.25).

Кстати, скобка во втором уравнении есть просто , так что проще писать

(8.28)

Подставляя эти матричные элементы в (8.24) и сокращая на , находим

Зная это отношение и зная условие нормировки, можно найти и , и . Сделать это нетрудно, но мы сократим нуть, прибегнув к одному трюку. Известно, что и Значит, (8.27) совпадает с

. (8.28)

Один из ответов, следовательно, таков:

. (8.29)

Он удовлетворяет и уравнению (8.28), и условию

Вы знаете, что умножение и на произвольный фазовый множитель ничего не меняет. Обычно формуле (8.29) предпочитают более симметричную запись, умножая на . Принято писать так:

. (8.30)

Это и есть ответ на наш вопрос. Числа и - это амплитуды того, что электрон будет замечен спином вверх или вниз (но отношению к оси ), если известно, что его спин направлен вдоль оси . [Амплитуды и равны просто и , умноженным на .]

Заметьте теперь занятную пещь. Напряженность магнитного поля нигде в (S.30) не появляется. Тот же результат, разумеется, получится в пределе, если поле устремить к нулю. Это означает, что мы дали общий ответ на вопрос, как представлять частицу, спин которой направлен вдоль произвольной оси. Амплитуды (8.30) - это проекционные амплитуды для частиц со спином , подобные проекционным амплитудам для частиц со спином 1, приведенным в гл. 3 [уравнения (3.38)]. Теперь мы сможем находить для фильтрованных пучков частиц со спином амплитуды проникновения через тот или иной фильтр Штерна - Герлаха.

Пусть представляет состояние со спином, направленным по оси вверх, а - состояние со спином вниз. Если представляет состояние со спином, направленным вверх по оси , образующей с осью углы и , то в обозначениях гл. 3 мы имеем

Эти результаты эквивалентны тому, что мы нашли из чисто геометрических соображений в гл. 4 [уравнение (4.36)], (Если вы в свое время решили пропустить гл. 4, то вот перед вами один из ее существенных результатов.)

Напоследок вернемся еще раз к тому примеру, о котором уже не раз говорилось. Рассмотрим такую задачу. "Сперва имеется электрон с определенным образом направленным спином, затем на 25 минут включается магнитное поле в направлении , а затем выключается. Каким окажется конечное состояние? Опять представим состояние в виде линейной комбинации . Но в нашей задаче состояния с определенной энергией являются одновременно нашими базисными состояниями и . Значит, и меняются только по фазе. Мы знаем, что

Мы сказали, что вначале у спина электрона было определенное направление. Это означает, что вначале и были двумя числами, определяемыми формулами (8.30). Переждав секунд, новые и мы получим из прежних умножением соответственно на / и . Что это будут за состояния? Узнать это легко, ведь это все равно, что измеить угол , вычтя из него , и не трогать угол .

Это значит, что к концу интервала времени состояние будет представлять электрон, выстроенный в направлении, отличающемся от первоначального только поворотом вокруг оси на угол . Раз этот угол пропорционален , то можно говорить, что направление спина прецессирует вокруг оси с угловой скоростью . Этот результат мы уже получали раньше несколько раз, но не так полно и строго. Теперь мы получили полное и точное квантовомеханическое описание прецессии атомных магнитов.. И неважно, какая физика там была первоначально - молекула ли аммиака или что другое, - вы можете перевести ее на язык соответствующей задачи об электроне. Стало быть, если мы в состоянии решить в общем случае задачу об электроне, мы уже решили все задачи о двух состояниях., и изменяйте скорость вращения так, чтобы она все время была пропорциональна напряженности (фиг. 8.11). Если все время это делать, вы остановитесь на какой-то конечной ориентации спиновой оси, и амплитуды и получатся просто как ее проекции [при помощи (8.30)] на вашу систему координат.

Фигура 8.11. Направление спина электрона и изменяющемся магнитном поле прецессирует с частотой вокруг оси, параллельной

Вы видите, что задача эта чисто геометрическая: надо заметить, где закончились все ваши вращения. Хотя сразу видно, что для этого требуется, но эту геометрическую задачу (отыскание окончательного итога вращений с переменным вектором угловой скорости) нелегко в общем случае решить явно. Во всяком случае, мы в принципе видим общее решение любой задачи для двух состояний. В следующей главе мы глубже исследуем математическую технику обращения с частицами спина и, следовательно, обращения с системами, обладающими двумя состояниями, в общем случае.

В некоторых электровакуумных приборах используется движение электронов в магнитном поле.

Рассмотрим случай, когда электрон влетает в однородное магнитное поле с начальной скоростью v0, направленной перпендикулярно магнитным силовым линиям. В этом случае на движущийся электрон действует так называемая сила Лоренца F, которая перпендикулярна вектору н0 и вектору напряженности магнитного поля Н. Величина силы F определяется выражением: F= ev0H.

При v0 = 0 сила Рравна нулю, т. е. на неподвижный электрон магнитное поле не действует.

Сила F искривляет траекторию электрона в дугу окружности. Поскольку сила F действует под прямым углом к скорости н0, она не совершает работы. Энергия электрона и его скорость не изменяются по величине. Происходит лишь изменение направления скорости. Известно, что движение тела по окружности (вращение) с постоянной скоростью получается благодаря действию направленной к центру центростремительной силы, которой именно и является сила F.

Направление поворота электрона в магнитном поле в соответствии с правилом левой руки удобно определяется по следующим правилам. Если смотреть в направлении магнитных силовых линий, то электрон движется по часовой стреле. Иначе говоря, поворот электрона совпадает с вращательным движением винта, который ввинчивается по направлению магнитных силовых линий.

Определим радиус r окружности, описываемой электроном. Для этого воспользуемся выражением для центростремительной силы, известным из механики: F = mv20/r. Приравняем его значению силы F = ev0H: mv20/r = ev0H. Теперь из этого уравнения можно найти радиус: r= mv0/(eH).

Чем больше скорость электрона v0, тем сильнее он стремится двигаться прямолинейно по инерции и радиус искривления траектории будет больше. С другой стороны, с увеличением Н растет сила F, искривление траектории возрастает и радиус окружности уменьшается.

Выведенная формула справедлива для движения в магнитном поле частиц с любыми массами и зарядом.

Рассмотрим зависимость rот mи e. Заряженная частица с большей массой mсильнее стремится лететь по инерции прямолинейно и искривление траектории уменьшится, т. е. rстанет больше. А чем больше заряд e, тем больше сила F и тем сильнее искривляется траектория, т. е. ее радиус становится меньше.

Выйдя за пределы магнитного поля, электрон дальше летит по инерции по прямой линии. Если же радиус траектории мал, то электрон может описывать в магнитном поле замкнутые окружности.

Таким образом, магнитное поле изменяет только направление скорости электронов, но не ее величину, т. е. между электроном и магнитным полем нет энергетического взаимодействия. По сравнению с электрическим полем действие магнитного поля на электроны является более ограниченным. Именно поэтому магнитное поле применяется для воздействия на электроны значительно реже, нежели электрическое поле.

Если два плоских, параллельно расположенных электрода поместить в вакуум и подключить к источнику электродвижущей силы, то в пространстве между электродами образуется электрическое поле, силовые линии которого будут прямолинейны, параллельны друг другу и перпендикулярны к поверхностям обоих электродов.

На рис. 1 буквой а обозначен электрод, подключенный к «+» батареи Е Б, а буквой к - электрод, подключенный к «-» батареи Е Б. Если в такое электрическое поле поместить заряд -е, не меняющий конфигурации поля, то на этот заряд будет действовать сила F, равная произведению напряженности поля Е на величину заряда -е:

Знак минус свидетельствует о том, что сила F, действующая на отрицательный заряд -е, и напряженность поля Е имеют противоположные направления. Для однородного электрического поля произведение напряженности Е на расстояние между электродами h равно приложенной разности потенциалов между электронами:

Eh = U к -U а,

и U к и U а - потенциалы электродов к и а.

Работа, совершаемая полем при перемещении электрона от одного электрода к другому, соответственно будет равна

А = Fh = e(U а - U к). (3)

Электрон приобретает кинетическую энергию и будет двигаться от электрода к к электроду а равномерно ускоренно. Скорость υ, с которой электрон достигает электрода а, может быть определена из равенства

(4)

где m - масса электрона; υ а - скорость электрона у электрода а; υ к - скорость электрона у электрода к (начальная скорость).

Если пренебречь начальной скоростью электрона, то формула (4) может быть упрощена: заменив отношение заряда электрона к его массе числовым значением и выражая потенциалы в вольтах, а скорость в м/сек, получаем

(5)

Время пролета электроном расстояния h между электродами определяется формулой

где υ ср =υ а -υ к /2 - средняя скорость электрона.

Если электрон будет двигаться в направлении, совпадающем с направлением вектора напряженности электрического поля Е, то направление перемещения окажется противоположным силе, действующей на электрон, и он будет расходовать ранее приобретенную кинетическую энергию. Таким образом, двигаться навстречу действия поля электрон сможет лишь при условии, если он обладает некоторой начальной скоростью, т. е. некоторым запасом кинетической энергии.

Практически однородное электрическое поле в электровакуумных приборах встречается крайне редко. В неоднородном поле напряженность изменяется от точки к точке как по величине, так и по направлению. Поэтому и сила, действующая на электрон, тоже меняется как по величине, так и по направлению.

В электровакуумных приборах, наряду с электрическим полем, для воздействия на движение электронов используется также магнитное поле. Если электрон находится в состоянии покоя или если он движется параллельно силовой линии магнитного поля, то на него никакая сила не действует. Поэтому при определении взаимодействия движущегося электрона и магнитного поля следует учитывать только составляющую скорости, перпендикулярную силовым линиям магнитного поля.

Сила F, действующая на электрон, всегда перпендикулярна вектору напряженности магнитного поля тору скорости электрона (рис. 3 ).

Рис. 3. Движение электрона в магнитном поле.

Направление силы F можно определять по «правилу буравчика»: если ручку буравчика вращать в направлении от вектора Н к вектору скорости электрона υ по кратчайшему угловому направлению, то поступательное движение буравчика совпадает с направлением силы F. Так как действие силы F всегда перпендикулярно направлению движения электрона, то эта сила не может совершать работы и влияет лишь на направление его движения. Кинетическая энергия электрона остается прежней, он движется с постоянной скоростью. Величина силы F определяется по формуле

где е - заряд электрона; Н - напряженность магнитного поля; υ п - составляющая скорости электрона, перпендикулярная полю Н. Сила F сообщает электрону значительное центростремительное ускорение, изменяя при этом траекторию его движения. Радиус кривизны траектории электрона определяют по формуле

(8)

где Н - в эрстедах; υ п - в вольтах; r - в сантиметрах.

Изменяя напряженность магнитного поля, можно менять радиус траектории электрона. Если электрон имеет также и составляющую скорости вдоль силовых линий магнитного поля, то траектория электрона будет винтовой с постоянным шагом.

Часто электрон движется в пространстве, в котором одновременно имеются электрическое и магнитное поля. При этом, в зависимости от величины и направления начальной скорости электрона, а также от напряженности электрического и магнитного полей, траектория электрона будет иметь различную форму.

Как только у электрона проявляется какая-то скорость, возникает поперечная отклоняющая сила F, и чем больше будет скорость электрона с, которую он приобретает за счет взаимодействия с электрическим полем, тем больше становится сила F. В точке В движение электрона происходит перпендикулярно силовым линиям электрического поля. В этой точке электрон обладает наибольшей скоростью, а следовательно, и максимальной кинетической энергией.

Дальнейшее движение электрона происходит под действием магнитного и ставшего для него тормозящим электрического поля. В точке С вся кинетическая энергия, запасенная электроном ранее, будет израсходована на преодоление тормозящего электрического поля. Потенциал точки С равен потенциалу точки А. Электрон, описав циклоидную траекторию, возвращается на прежний потенциальный уровень.