Затухающие малые колебания. Свободные затухающие колебания

§6 Затухающие колебания

Декремент затухания. Логарифмический декремент затухания.

Свободные колебания технических систем в реальных условиях протекают, когда на них действуют силы сопротивления. Действие этих сил приводит к уменьшению амплитуды колеблющейся величины.

Колебания, амплитуда которых из-за потерь энергии реальной колебательной системы уменьшается с течением времени, называются затухающими .

Наиболее часто встречается случаи, когда сила сопротивления пропорциональна скорости движения

где r - коэффициент сопротивления среды. Знак минус показывает, что F C направлена в сторону противоположную скорости.

Запишем уравнение колебаний в точке, колеблющийся в среде, коэффициент сопротивлений которой r . По второму закону Ньютона

где β - коэффициент затухания. Этот коэффициент характеризует скорость затухания колебаний, При наличии сил сопротивления энергия колеблющейся системы будет постепенно убывать, колебания будут затухать.

- дифференциальное уравнение затухающих колебаний.

Уравнение затухающих колебаний.

ω - частота затухающих колебаний:

Период затухающих колебаний:

Затухающие колебания при строгом рассмотрении не являются периодическими. Поэтому о периоде затухаюших колебаний можно гово-рить, когда β мало.

Если затухания выражены слабо (β→0), то . Затухающие колебания можно

рассматривать как гармонические колебания, амплитуда которых меняется по экспоненциальному закону

В уравнении (1) А 0 и φ 0 - произвольные константы, зависящие от выбора момента времени, начиная е которого мы рассматриваем колебания

Рассмотрим колебание в течение, некоторого времени τ, за которое амплитуда уменьшится в е раз

τ - время релаксации.

Коэффициент затихания β обратно пропорционален времени, в течение которого амплитуда уменьшается в е раз. Однако коэффициента затухания недостаточна для характеристики затуханий колебаний. Поэтому необходимо ввести такую характеристику для затухания колебаний, в которую входит время одного колебаний. Такой характеристикой является декремент (по-русски: уменьшение) затухания D , который равен отношению амплитуд, отстоящих по времени на период:

Логарифмический декремент затухания равен логарифму D :

Логарифмический декремент затухания обратно пропорционален числу колебаний, в результате которых амплитуда колебаний умень-шилась в е раз. Логарифмический декремент затухания - постоянная для данной системы величина.

Еще одной характеристикой колебательной система является добротность Q .

Добротность пропорциональна числу колебаний, совершаемых системой, за время релаксации τ.

Q колебательной системы является мерой относительной диссипации (рассеивания) энергии.

Q колебательной системы называется число, показывающее во сколько раз сила упругости больше силы сопротивления.

Чем больше добротность, тем медленнее происходит затухание, тем затухающие колебания ближе к свободным гармоническим.

§7 Вынужденные колебания.

Резонанс

В целом ряде случаев возникает необходимость создания систем, совершающих незатухающие колебания. Получить незатухающие колебания в системе можно, если компенсировать потери энергии, воздействуя на систему периодически изменяющейся силой.

Пусть

Запишем выражение для уравнения движения материальной точки, совершающей гармоническое колебательное движение под действием вынуждающей силы.

По второму закону Ньютона:

(1)

Дифференциальное уравнение вынуж-денных колебаний.

Это дифференциальное уравнение является линейным неоднородным.

Его решение равно сумме общего решения однородного уравнения и частного решения неоднородного уравнения:

Найдем частное решение неоднородного уравнения. Для этого перепишем уравнение (1) в следующем виде:

(2)

Частное решение этого уравнения будем искать в виде:

Тогда

Подставим в (2):

т.к. выполняется для любого t , то должно выполняться равенство γ = ω , следовательно,

Это комплексное число удобно представить в виде

где А определяется по формуле (3 ниже), а φ - по формуле (4), следовательно, решение (2),в комплексной форме имеет вид

Его вещественная часть, являвшаяся решением уравнения (1) равна:

где

(3)

(4)

Слагаемое Х о.о. играет существенную роль только в начальной стадии при установлении колебаний до тех пор, пока амплитуда вынужденных колебаний не достигнет значения определяемого равенством (3). В установившемся режиме вынужденные колебания происходят с частотой ω и являются гармоническими. Амплитуда (3) и фаза (4) вынужденных колебаний зависят от частоты вынуждающей силы. При определенной частоте вынуждающей силы амплитуда может достигнуть очень больших значений. Резкое возрастание амплитуды вынужденных колебаний при приближении частоты вынуждающей силы к собственной частоте механи-ческой системы, называется резонансом .

Частота ω вынуждающей силы, при которой наблюдается резонанс, называется резонансной. Для того чтобы найти значение ω рез, необходимо найти условие максимума амплитуды. Для этого нужно определить условие минимума знаменателя в (3) (т.е. исследовать (3) на экстремум).

Зависимость амплитуды колеблющейся величины от частоты вынуждающей силы называется резонансной кривой . Резонансная кривая будет тем выше, чем меньше коэффициент затухания β и с уменьшением β, максимум резонансных кривых смешается вправо. Если β = 0, то

ω рез = ω 0 .

При ω→0 все кривые приходят к значению - статическое отклонение.

Параметрический резонанс возникает в том случае, когда периодическое изменение одного из параметров система приводит к резкому увеличению амплитуды колеблющейся системы. Например, кабины, делающие "солнышко" за счет изменения положения центра тяжести система.(То же в "лодочках".) См. §61 .т. 1 Савельев И.В.

Автоколебаниями называются такие колебания, энергия которых периодически пополняется в результате воздействия самой системы за счет источника энергии, находящегося в этой же системе. См. §59 т.1 Савельев И.В.

Затухающие колебания

Затухающие колебания пружинного маятника

Затухающие колебания - колебания, энергия которых уменьшается с течением времени. Бесконечно длящийся процесс вида в природе невозможен. Свободные колебания любого осциллятора рано или поздно затухают и прекращаются. Поэтому на практике обычно имеют дело с затухающими колебаниями. Они характеризуются тем, что амплитуда колебаний A является убывающей функцией. Обычно затухание происходит под действием сил сопротивления среды, наиболее часто выражаемых линейной зависимостью от скорости колебаний или её квадрата.

В акустике: затухание - уменьшение уровня сигнала до полной неслышимости.

Затухающие колебания пружинного маятника

Пускай имеется система, состоящая из пружины (подчиняющейся закону Гука), один конец которой жёстко закреплён, а на другом находится тело массой m . Колебания совершаются в среде, где сила сопротивления пропорциональна скорости с коэффициентом c (см. вязкое трение).

Корни которого вычисляются по следующей формуле

Решения

В зависимости от величины коэффициента затухания решение разделяется на три возможных варианта.

  • Апериодичность

Если , то имеется два действительных корня, и решение дифференциального уравнения принимает вид:

В этом случае колебания с самого начала экспоненциально затухают.

  • Граница апериодичности

Если , два действительных корня совпадают , и решением уравнения является:

В данном случае может иметь место вре́менный рост, но потом - экспоненциальное затухание.

  • Слабое затухание

Если , то решением характеристического уравнения являются два комплексно сопряжённых корня

Тогда решением исходного дифференциального уравнения является

Где - собственная частота затухающих колебаний.

Константы и в каждом из случаев определяются из начальных условий:

См. также

  • Декремент затухания

Литература

Лит.: Савельев И. В., Курс общей физики:Механика, 2001.


Wikimedia Foundation . 2010 .

Смотреть что такое "Затухающие колебания" в других словарях:

    Затухающие колебания - Затухающие колебания. ЗАТУХАЮЩИЕ КОЛЕБАНИЯ, колебания, амплитуда которых A уменьшается с течением времени вследствие потерь энергии: превращения энергии колебаний в тепло в результате трения в механических системах (например, в точке подвеса… … Иллюстрированный энциклопедический словарь

    Собственные колебания, амплитуда А которых убывает со временем t по закону экспоненты А(t) = Аоexp (?t) (? показатель затухания из за диссипации энергии благодаря силам вязкого трения для механических затухающих колебаний и омическому… … Большой Энциклопедический словарь

    Колебания, амплитуда которых постепенно уменьшается, напр. колебания маятника, испытывающего сопротивление воздуха и трение в подвесе. Все свободные колебания, происходящие в природе, являются в большей или меньшей мере З. К. Электрические З. К.… … Морской словарь

    затухающие колебания - Механические колебания с уменьшающимися во времени значениями размаха обобщенной координаты или ее производной по времени. [Сборник рекомендуемых терминов. Выпуск 106. Механические колебания. Академия наук СССР. Комитет научно технической… … Справочник технического переводчика

    Затухающие колебания - (ВИБРАЦИЯ) колебания (вибрация) с уменьшающимися значениями размаха … Российская энциклопедия по охране труда

    Собственные колебания системы, амплитуда А которых убывает со временем t по закону экспоненты А(t) = А0ехр(?α t) (α показатель затухания) из–за диссипации энергии благодаря силам вязкого трения для механических затухающих колебаний и омическому… … Энциклопедический словарь

    Затухающие колебания - 31. Затухающие колебания Колебания с уменьшающимися значениями размаха Источник … Словарь-справочник терминов нормативно-технической документации

    Собственные колебания системы, амплитуда А к рых убывает со временем t по закону экспоненты A(t) = = Аоехр(at) (a показатель затухания) из за диссипации энергии благодаря силам вязкого трения для механич. 3. к. и омическому сопротивлению для эл … Естествознание. Энциклопедический словарь

    затухающие колебания - silpstantieji virpesiai statusas T sritis automatika atitikmenys: angl. damped oscillation vok. gedämpfte Schwingung, f rus. затухающие колебания, n pranc. oscillations amorties, f; oscillations décroissantes, f … Automatikos terminų žodynas

    затухающие колебания - slopinamieji virpesiai statusas T sritis fizika atitikmenys: angl. damped oscillations; damped vibrations; dying oscillations vok. abklingende Schwingungen, f; gedämpfte Schwingungen, f rus. затухающие колебания, n pranc. oscillations amorties, f … Fizikos terminų žodynas

До сих пор мы рассматривали гармонические колебания, возникающие, как это уже отмечалось, при наличии в системе единственной силы - силы упругости или квазиупругой силы. В окружающей нас природе, строго говоря, таких колебаний не существует. В реальных системах кроме упругих или квазиупругих сил всегда присутствуют и другие силы, отличающиеся по характеру действия от упругих - это силы, возникающие при взаимодействии тел системы с окружающей средой - диссипативные силы. Конечным результатом их действия является переход механической энергии движущегося тела в теплоту. Другими словами, происходит рассеяние или диссипация механической энергии. Процесс рассеяния энергии не является чисто механическим и для своего описания требует привлечения знаний из других разделов физики. В рамках механики мы можем описать этот процесс путем введения сил трения или сопротивления. В результате рассеяния энергии амплитуда колебаний убывает. В этом случае принято говорить, что колебания тела или системы тел затухают. Затухающие колебания уже не являются гармоническими, так как их амплитуда и частота со временем изменяются.

Колебания, которые вследствие рассеяния энергии в колеблющейся системе происходят с непрерывно уменьшающейся амплитудой, называются затухающими. Если колебательная система, выведенная из состояния равновесия, совершает колебания под действием только внутренних сил, без сопротивления и рассеяния (диссипации) энергии, то совершающиеся в ней колебания называются свободными (или собственными) незатухающими колебаниями. В реальных механических системах с диссипацией энергии свободные колебания всегда затухающие. Их частота со отличается от частоты со 0 колебаний системы без затухания (о 0 тем больше, чем больше влияние сил сопротивления.

Рассмотрим затухающие колебания на примере пружинного маятника. Ограничимся рассмотрением малых колебаний. При малых скоростях колебаний силу сопротивления можно принять пропорциональной величине скорости колебательных смещений

где v = 4 - скорость колебаний; г - коэффициент пропорциональности, называемый коэффициентом сопротивления. Знак минус в выражении (2.79) для силы сопротивления обусловлен тем, что она направлена в сторону, противоположную скорости движения колеблющегося тела.

Зная выражения для квазиупругой силы i^p = -и силы сопротивления F c = с учетом совместного действия этих сил, можно записать динамическое уравнение движения тела, совершающего затухающие колебания

В этом уравнении коэффициент (3 в соответствии с формулой (2.49) заменим на ты], после чего последнее уравнение разделим наши получим

Будем искать решение уравнения (2.81) в виде функции времени вида

Здесь пока еще неопределенная постоянная величина у. Начальная фаза в нашем рассмотрении будет для упрощения предполагаться равной нулю, т.е. мы можем «включить» секундомер тогда, когда колебательное смещение проходит через положение равновесия (нуль координаты).

Определить величину у можем путем подстановки в дифференциальное уравнение затухающих колебаний (2.81) предполагаемого решения (2.82), а также получаемых из него скорости

и ускорения

Подстановка (2.83) и (2.84) совместно с (2.82) в (2.81) дает После сокращения на /1 () е" : " и умножения на «-1» получим Решив это квадратное уравнение относительно у, имеем

Подставив у в (2.82), найдем, как зависит смещение от времени при затухающих колебаниях. Введем обозначения

где символом со обозначена угловая частота затухающих колебаний и соо угловая частота свободных колебаний без затухания. Видно, что при S > 0 частота со затухающих колебаний всегда меньше частоты

Таким образом, и, следовательно, смещение при затухающих колебаниях может быть выражено в виде

Выбор знака «+» или «-» в показателе второй экспоненты произволен и отвечает сдвигу колебаний по фазе на л . Будем записывать затухающие колебания с учетом выбора знака «+», тогда выражение (2.90) будет

Это и есть искомая зависимость смещения от времени. Ее можно переписать и в тригонометрической форме (ограничиваясь действительной частью)

Искомая зависимость амплитуды A(t ) от времени может быть представлена в виде

где А(, - амплитуда в момент времени t = 0.

Постоянную 8, равную согласно (2.88) отношению коэффициента сопротивления г к удвоенной массе т колеблющегося тела, называют коэффициентом затухания колебаний. Выясним физический смысл этого коэффициента. Найдем то время т, за которое амплитуда затухающих колебаний уменьшится в е (основание натуральных логарифмов е = 2,72) раз. Для этого положим

Используя соотношение (2.93), получим: или

откуда следует

Следовательно, коэффициент затухания 8 - это величина, обратная времени т, по прошествии которого амплитуда затухающих колебаний уменьшится в е раз. Величина т, имеющая размерность времени, называется постоянной времени затухающего колебательного процесса.

Кроме коэффициента 8 для характеристики процесса затухания колебаний часто используют так называемый логарифмический декремент затухания X, равный натуральному логарифму отношения двух амплитуд колебаний, отделенных друг от друга промежутком времени, равным периоду Т

Выражение под логарифмом, обозначенное символом d, называется просто декрементом колебаний (декрементом затухания).

Используя выражение амплитуды (2.93), получим:

Выясним физический смысл логарифмического декремента затухания. Пусть амплитуда колебаний уменьшается в е раз по прошествии N колебаний. Время т, за которое тело совершит N колебаний, можно выразить через период т = NT. Подставив это значение т в (2.97), получаем 8NT= 1. Поскольку 67"= А., то NX = 1, или

Следовательно, логарифмический декремент затухания есть величина, обратная числу колебаний, за которые амплитуда затухающих колебаний уменьшится в е раз.

В ряде случаев зависимость амплитуды колебаний от времени A{t) удобно выразить через логарифмический декремент затухания А. Показатель степени 61 выражения (2.93) можно записать согласно (2.99) следующим образом:

Тогда выражение (2.93) принимает вид

где величина, равная числу N колебаний, совершаемых системой за время т.

В таблице 2.1 проведены примерные значения (по порядку величины) логарифмических декрементов затухания некоторых колебательных систем.

Таблица 2.1

Значения декрементов затухания некоторых колебательных систем

Проанализируем теперь влияние сил сопротивления на частоту колебаний. При смешении тела из положения равновесия и возвращении его в положение равновесия, на него все время будет действовать сила сопротивления, вызывая его торможение.

Это значит, что те же самые участки пути при затухающих колебаниях будут пройдены телом за больший интервал времени, чем при свободных колебаниях. Период затухающих колебаний Т, следовательно, будет больше периода собственных свободных колебаний. Из выражения (2.89) видно, что различие в частотах становится тем больше, чем больше коэффициент затухания б. При больших б (б > соо) затухающие колебания вырождаются в апериодический {не периодический) процесс, при котором в зависимости от начальных условий система возвращается в положение равновесия сразу без его прохождения, либо перед остановкой проходит положение равновесия однократно (совершает только одно колебание) - см. рис. 2.16.

Рис. 2.16. Затухающие колебания:

На рисунке 2.16, а изображен график зависимости %{t) и A{t) (при 5 > со 0 и начальной фазе соо, колебания вовсе невозможны (этому случаю соответствует мнимое значение частоты, определяемой из равенства (2.89). Система становится демпфирующей, а колебательный процесс - апериодическим (рис. 2.16, б).

  • Запись ехр(х) эквивалентна е*. Мы будем пользоваться обеими формами.
  • При общем рассмотрении колебаний полное значение фазы колебаний задается начальными условиями, т.е. величиной смещения 4(0 и скорости 4(0 в начальный моментвремени (t = 0) и включает слагаемое

ОБЩИЕ СВЕДЕНИЯ

Колебаниями называются движения или процессы, которые характеризуются определенной повторяемостью во времени. Колебания называются свободными , если они совершаются за счет первоначально сообщенной энергии при последующем отсутствии внешних воздействий на колебательную систему. Простейшим типом колебаний являются гармонические колебания - колебания, при которых колеблющаяся величина изменяется во времени по закону синуса или косинуса.

Дифференциальное уравнение гармонических колебаний имеет вид:

где - колеблющаяся величина, - циклическая частота.

- решение этого уравнения. Здесь - амплитуда , - начальная фаза.

Фаза колебаний.

Амплитуда - максимальное значение колеблющейся величины.

Период колебаний - промежуток времени, через который происходит повторение движения тела. Фаза колебания за период получает приращение . . , - число колебаний.

Частота колебаний - число полных колебаний, совершаемых в единицу времени. . . Измеряется в герцах (Гц).

Циклическая частота - число колебаний, совершаемых за секунд. . Единица измерения .

Фаза колебаний - величина, стоящая под знаком косинуса и характеризующая состояние колебательной системы в любой момент времени.

Начальная фаза - фаза колебаний в начальный момент времени. Фаза и начальная фаза измеряются в радианах ().

Свободные затухающие колебания - колебания, амплитуда которых из-за потерь энергии реальной колебательной системой с течением времени уменьшается. Простейшим механизмом уменьшения энергии колебаний является ее превращение в теплоту вследствие трения в механических колебательных системах, а также омических потерь и излучения электромагнитной энергии в электрических колебательных системах.

- логарифмическим декрементом затухания .

Величина N e - это число колебаний, совершаемых за время уменьшения амплитуды в е раз. Логарифмический декремент затухания - постоянная величина для данной колебательной системы.

Для характеристики колебательной системы используют понятие добротности Q , которая при малых значениях логарифмического декремента равна

.

Добротность пропорциональна числу колебаний, совершаемых системой за время релаксации.

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ТРЕНИЯ С ПОМОЩЬЮ НАКЛОННОГО МАЯТНИКА

Теоретическое обоснование методики определения коэффициентатрения

Наклонный маятник представляет собой шар, подвешенный на длинной нити и лежащий на наклонной плоскости.

Если шар отвести из положения равновесия (ось OO 1) на угол a, а затем отпустить, то возникнут колебания маятника. При этом шар будет кататься по наклонной плоскости около положения равновесия (рис. 1, а). Между шаром и наклонной плоскостью будет действовать сила трения качения. В результате колебания маятника будут постепенно затухать, то есть будет наблюдаться уменьшение во времени амплитуды колебаний.

Можно предположить, что по величине затухания колебаний могут быть определены сила трения и коэффициент трения качения.

Выведем формулу, которая связывает уменьшение амплитуды колебаний с коэффициентом трения качения m.При качении шара по плоскости сила трения совершает работу. Эта работа уменьшает полную энергию шара. Полная энергия складывается из кинетической и потенциальной энергий. В тех положениях, где маятник максимально отклонен от положения равновесия, его скорость, а следовательно, и кинетическая энергия равны нулю.

Эти точки называются точками поворота. В них маятник останавливается, поворачивается и движется обратно. В момент поворота энергия маятника равна потенциальной энергии, поэтому уменьшение потенциальной энергии маятника при его движении от одной точки поворота до другой равна работе силы трения на пути между точками поворота.

Пусть А - точка поворота (рис. 1, а). В этом положении нить маятника составляет угол a с осью OO 1 .Если бы трения не было, то через половину периода маятник оказался бы в точке N , а угол отклонения был бы равен a. Но из-за трения шар немного не докатится до точки N и остановится в точке В .Это и будет новая точка поворота. В этой точке угол нити с осью OO 1 будет равен . За половину периода угол поворота маятника уменьшился на . Точка В расположена несколько ниже, чем точка А, и поэтому потенциальная энергия маятника в точке В меньше, чем в точке А. Следовательно, маятник потерял высоту при перемещении из точки А в точку В .

Найдем связь между потерей угла и потерей высоты . Для этого спроецируем точки A и B на ось OO 1 (см. рис. 1, а). Это будут точки A 1 и B 1 соответственно. Очевидно, что длина отрезка А 1 В 1

где - длина нити.

Так как ось OO 1 наклонена под углом к вертикали, проекция отрезка на вертикальную ось и есть потеря высоты (рис. 1, б):

При этом изменение потенциальной энергии маятника при переходе его из положения A в положение В равно:

, (3)

где m - масса шара;

g - ускорение свободного падения.

Вычислим работу силы трения.

Сила трения определяется по формуле:

Путь , пройденный шаром за половину периода колебаний маятника, равен длине дуги AB :

.

Работа силы трения на пути :

Но , поэтому с учетом уравнений (2), (3), (4) получается

. (6)

Выражение (6) существенно упрощается с учетом того, что угол очень мал (порядка 10 -2 радиан). Итак, . Но . Поэтому .

Таким образом, формула (6) приобретает вид:

,

. (7)

Из формулы (7) видно, что потеря угла за половину периода определяется коэффициентом трения m и углом a. Однако можно найти такие условия, при которых от угла a не зависит. Учтем, что коэффициент трения качения мал (порядка 10 -3). Если рассматривать достаточно большие амплитуды колебаний маятника a, такие, при которых , то слагаемым в знаменателе формулы (7) можно пренебречь и тогда:

.

С другой стороны, пусть угол a будет малым настолько, чтобы можно было считать, что . Тогда потеря угла за половину периода колебаний будет определяться формулой:

. (8)

Формула (8) справедлива, если:

. (9)

Из-за того, что m имеет порядок 10 -2 , неравенству (9) удовлетворяют углы a порядка 10 -2 -10 -1 радиан.

Итак, за время одного полного колебания потеря угла составит:

,

а за n колебаний - .

Формула (10) дает удобный способ определения коэффициента трения качения. Необходимо измерить уменьшение угла Da n за 10-15 ко-лебаний, а затем по формуле (10) вычислить m.

В формуле (10) величина Da выражена в радианах. Чтобы использовать значения Da в градусах, формулу (10) необходимо видоизменить:

. (11)

Выясним физический смысл коэффициента трения качения. Рассмотрим сначала более общую задачу. Шар массой m и моментом инерции I c относительно оси, проходящей через центр масс, движется по гладкой поверхности (рис. 2).

Рис. 2

К центру масс C приложена сила , направленная вдоль оси ox и являющаяся функцией координаты x . Со стороны поверхности на тело действует сила трения F ТР. Пусть момент силы трения относительно оси, проходящей через центр C шара, равен M ТР.

Уравнения движения шара в этом случае имеют вид:

; (12)

, (13)

где - скорость центpa масс;

w - угловая скорость.

В уравнениях (12) и (13) четыре неизвестных: , w, F ТР, M ТР. В общем случае задача не определена.

Допустим, что:

1) тело катится без проскальзывания. Тогда:

где R - радиус шара;

2) тело и плоскость являются абсолютно жесткими, т.е. тело не деформируется, а касается плоскости в одной точке О (точечный контакт), тогда между моментом силы трения и силой трения имеется связь:

. (15)

С учетом формул (14) и (15) из уравнений (12) и (13) получаем выражение для силы трения:

. (16)

Выражение (16) не содержит коэффициента трения m, который определяется физическими свойствами соприкасающихся поверхностей шара и плоскости, такими, как шероховатость, или вид материалов, из которых изготовлены шар и плоскость. Этот результат - прямое следствие принятой идеализации, отражаемой связями (14) и (15). Кроме того, легко показать, что в принятой модели сила трения не совершает работы. Действительно, умножим уравнение (12) на , а уравнение (13) — на w. Учитывая, что

и

и складывая выражения (12) и (13), получаем

где W (x ) - потенциальная энергия шара в поле силы F (x ). Следует учесть, что

Если принять во внимание формулы (14) и (15), то правая часть равенства (17) обращается в нуль. В левой части равенства (17) стоит производная по времени от полной энергии системы, которая состоит из кинетической энергии поступательного движения шара , кинетической энергии вращательного движения и потенциальной энергии W (х ). Это значит, что полная энергия системы - постоянная величина, т.е. сила трения не совершает работы.

Очевидно, что и этот несколько странный результат также следствие принятой идеализации. Это свидетельствует о том, что принятая идеализация не отвечает физической реальности. В самом деле, в процессе движении шар взаимодействует с плоскостью, поэтому его механическая энергия должна убывать, а это значит, что связи (14) и (15) могут быть верны лишь настолько, насколько можно пренебречь диссипацией энергии.

Совершенно ясно, что в данном случае нельзя принять такую идеализацию, поскольку наша цель - определить по изменению энергии маятника коэффициент трения. Поэтому будем считать справедливым предположение об абсолютной жесткости шара и поверхности, а значит, и справедливой связи (15). Однако откажемся от предположения, что шар движется без проскальзывания. Мы допустим, что имеет место слабое проскальзывание.

Пусть скорость точек касания (на рис. 2 точка О) шара (скорость проскальзывания):

. (19)

Тогда, подставляя в уравнение (17) и учитывая условия (15) и (20), приходим к уравнению:

, (21)

из которого видно, что скорость диссипации энергии равна мощности силы трения. Результат вполне естественный, т.к. тело скользит по поверхности со скоростью и, нанего действует сила трения, совершающая работу, вследствие чего полная энергия системы уменьшается.

Выполняя в уравнении (21) дифференцирование и учитывая соотношение (18), получаем уравнение движения центра масс шара:

. (22)

Оно аналогично уравнению движения материальной точки массой:

, (23)

под действием внешней силы F и силы трения качения:

.

Причем, F ТР - обычная сила трения скольжения. Следовательно, при качении шара эффективная сила трения, которую называют силой трения качения, есть просто обычная сила трения скольжения, умноженная на отношение скорости проскальзывания к скорости центра масс тела. На практике часто наблюдается случай, когда сила трения качения не зависит от скорости тела.

Видимо, в этом случае скорость проскальзывания и пропорциональна скорости тела:

Механическое движение всегда сопровождается трением. Трение приводит к рассеянию (диссипации) механической энергии. Диссипация энергии имеется в любых не идеализированных колебательных системах, она вызывает затухание собственных колебаний.

Определение

Затухающими колебаниями называют колебания, амплитуда которых постепенно уменьшается со временем из-за потерь энергии колебательной системой.

Уравнение колебаний пружинного маятника с затуханием

Иногда, если тело движется в веществе, силу сопротивления (${\overline{F}}_{tr}$), которая действует на рассматриваемое тело, при маленьких скоростях его движения, считают прямо пропорциональной скорости ($\overline{v}$):

\[{\overline{F}}_{tr}=-\beta \overline{v}\left(1\right),\]

где $\beta $ - коэффициент сопротивления.

Данную силу учитывают в уравнении второго закона Ньютона при описании движения. Так, уравнение, которое описывает линейные колебания по вертикали (колебания по оси X) пружинного маятника, учитывающее силу трения принимает вид:

где $\dot{x}=v_x.$ Принимая во внимание равенства:

\[{\omega }^2_0=\frac{k}{m};;2\gamma =\frac{\beta }{m}\left(3\right),\]

(где ${\omega }_0$- циклическая частота свободных незатухающих колебаний (собственная частота колебаний при $\gamma $=0) той же колебательной системы; $\gamma $ - коэффициент затухания) уравнение колебаний пружинного маятника с затуханием (2) преобразуем к виду:

\[\ddot{x}+2\gamma \dot{x}+{\omega }^2_0x=0\ \left(4\right).\]

Малые собственные колебания, затухающие вследствие сопротивления среды в любой физической системе (математический маятник, физический маятник, электрические колебания...) описывают при помощи уравнения формы (4).

Уравнение затухающих колебаний имеет точное решение:

где $\omega =\sqrt{{\omega }^2_0-{\gamma }^2}$; $A_0$ - начальная амплитуда колебаний, задаваемая начальными условиями; $\varphi $ - постоянная из начальных условий. При $\gamma \ll {\omega }_0$, $\omega \approx {\omega }_0$, параметр $A_0e^{-\gamma t}$ можно считать медленно изменяющейся во времени амплитудой колебаний.

Затухание колебаний по экспоненте связано с тем, что силу сопротивления мы приняли пропорциональной скорости. Если использовать другую зависимость силы трения от скорости, то закон затухания изменится.

Диссипация энергии при затухающих колебаниях

Пусть затухание мало, при этом потеря энергии колебательной системой за один период много меньше, чем энергия колебаний.

Рассеяние энергии за период колебаний происходит не равномерно, ввиду осцилляции кинетической энергии ($E_k$). Уравнение убывания энергии при затухающих колебаниях будет иметь вид:

\[\frac{dE}{dt}=-\frac{2\beta }{m}\left\langle E_k\right\rangle \left(6\right),\]

где $\frac{dE}{dt}$ - скорость изменения энергии колебаний; $\left\langle E_k\right\rangle $ - средняя величина кинетической энергии за период колебаний. Уравнение (6) не применяют для промежутков времени, которые меньше периода колебаний.

Так как мы считаем затухание малым, то $\left\langle E_k\right\rangle $ можно принять равным (как при свободных колебаниях) половине полной энергии осциллятора:

\[\left\langle E_k\right\rangle =\frac{E}{2}\left(7\right).\]

В таком случае уравнение (6) можно записать в виде:

\[\frac{dE}{dt}=-2\gamma E\ \left(8\right).\]

Выражение (8) отображает «сглаженное» поведение энергии колебаний (в случае, если детали изменения энергии за один период колебаний не интересны). Оно показывает, что скорость изменения энергии пропорциональна самой энергии. Решением уравнения (8) является функция:

где $E_0$ - величина энергии колебательной системы в начальный момент времени.

Так как энергия колебаний пропорциональна квадрату амплитуды ($E\sim A^2$), изменение амплитуды колебаний за большие отрезки времени (в сравнении с периодом колебаний) запишем в виде функции:

$A_0$ - начальная амплитуда колебаний.

Время жизни колебаний. Период затухающих колебаний. Декремент затухания

Из формулы (10) видно, что амплитуда затухающих колебаний убывает по экспоненте. За время $\tau =\frac{1}{\gamma }$ амплитуда убывает в $e$ раз и это не зависит от $A_0$. Время $\tau $ в этом случае называют временем жизни колебаний (или временем релаксации) (не смотря на то, что в соответствии с выражением (9) колебания должны длиться бесконечно). Тезис о малости затухания означает, что время жизни колебаний не бесконечно, а много больше, чем их период ($\tau \gg T$). За время жизни происходит много колебательных движений.

Строго говоря, затухающие колебания не являются строго периодическими движениями. Периодом в данном случае считают промежуток времени между двумя последовательными максимальными отклонениями от положения равновесия.

Период затухающих колебаний считают равным:

Пусть $A\left(t\right)\ и\ A(t+T)$ - амплитуды двух последовательных колебаний, моменты времени которых отличаются на период. Отношение этих амплитуд, следуя (10) равно:

\[\frac{A\left(t\right)}{A(t+T)}=e^{\gamma T}(12)\]

называют декрементом затухания. Натуральный логарифм декремента затухания ($\theta $):

\[\theta ={\ln \left(\frac{A\left(t\right)}{A\left(t+T\right)}\right)\ }=\gamma T=\frac{T}{\tau }=\frac{1}{N_e}(13)\]

называют логарифмическим декрементом затухания. Для колебательной системы $\theta $ постоянная величина.

Примеры задач с решением

Пример 1

Задание. Каков коэффициент затухания маятника ($\gamma $), если за $\Delta t$ амплитуда его колебаний уменьшилась в $n$ раз?

Решение. За основу решения задачи примем уравнение затухающих колебаний в виде:

По условию задачи имеем:

\[\frac{A_1}{A_2}=n.\]

С другой стороны:

где $t_2-t_1=\Delta t$. Найдем натуральный логарифм от правой и левой части выражения (1.2), получим:

\[{\ln \left(\frac{A_1}{A_2}\right)\ }=\gamma \Delta t\left(1.3\right).\]

Выразим $\gamma $ из (1.3) учтем, что $\frac{A_1}{A_2}=n$:

\[\gamma =\frac{{\ln \left(\frac{A_1}{A_2}\right)\ }}{\Delta t}=\gamma =\frac{{\ln n\ }}{\Delta t}.\]

Ответ. $\gamma =\frac{{\ln n\ }}{\Delta t}$

Пример 2

Задание. Что представляет собой фазовая траектория затухающего колебания?

Решение. Фазовой траекторией называют траекторию движения в плоскости $\left(x;;v\right).$ По оси абсцисс откладывается отклонение $x$, по оси ординат откладывают скорость $v$. Каждому движению в момент времени $t$ соответствует изображающая точка, на указанной плоскости координаты ее $\left(x,v\right),$ они однозначно определены мгновенными значениями отклонения и скорости. Точка со временем движется и описывает траекторию (рис.1). В данном случае время выступает как параметр, уравнение фазовой траектории задет функция:

Фазовая траектория затухающего колебания, если

\[{\overline{F}}_{tr}=-\beta \overline{v}\left(2.2\right),\]

представляет собой незамкнутую спираль, которая закручивается вокруг начала координат (рис.1). Если затухание колебаний малое, то есть за время жизни колебательная система совершает множество колебаний, количество витков спирали в фазовой плоскости будет таким же.