Транзисторный коммутатор зажигания автомобильная электроника занимательная техника. Транзисторный коммутатор зажигания

Заголовок

Коммутаторы в системе зажигания автомобилей используются уже очень давно. Первые из них, буквально, состояли из двух проводов и батареи напряжения. Сегодня, это высокотехнологический узел одной из главных систем автомобильного устройства. Переоценить значение его работы крайне сложно, ведь благодаря эволюции именно этого устройства, удалось достигнуть максимальных показателей сжигания воздухо-горючих смесей.

Другими словами, применение современного коммутатора системы зажигания, позволяет использовать на автомобилях бензин низкооктановых марок, и увеличивает отдачу двигателя на невысоких оборотах.

Что такое коммутатор системы зажигания

Если говорить просто, то под коммутатором системы зажигания, подразумевается несложная электрическая схема, которая стоит на пути электрического заряда между катушкой зажигания и свечой, которая воспламеняет смесь воздуха и бензина в котлах. В чем смысл, назначение и принцип работы этого устройства системы зажигания? Отвечая на этот вопрос, стоит понимать, что существует два типа прерывающих устройств:

  1. Коммутаторы механического прерывания. Такими электрическими узлами оснащались практически все машины Советского союза, вплоть, до 1988 года. На то время это были практичные, но крайне ненадежные контактные выключатели. Принцип их работы основывался на законах самоиндукции, и приводился в действие механическим прерывателем. Последний, размыкал первичную цепь низкого напряжения, вследствие чего во вторичных цепях трансформатора возникал электромагнитный импульс, который преобразовывался в электрическую искру, и передавался на свечу зажигания. Для того чтобы обезопасить контакты коммутатора системы зажигания в цепь включался конденсатор.
  2. Коммутаторы бесконтактного действия, или как их еще называют, транзисторные. Принципиально их схема работы аналогична предшественникам, отличается сам механизм исполнения работы. Так, в отличие от контактных выключателей, бесконтактники осуществляют прерывание тока в электрических цепях за счет входного транзистора, который служит шлюзом для потока электроэнергии. На самых последних моделях автомобилей устанавливаются коммутаторы, которые полностью контролируются электроникой.

При этом последние, явно выигрывают у первых, и с большим преимуществом.


Так, например, при использовании транзисторного коммутатора для бесконтактной системы зажигания:

  • уменьшается ток, который проходит по контактам прерывателя, вследствие чего они перестают обгорать и залипать;
  • далее, увеличивается длительность подачи искры, что автоматически гарантирует лучшее воспламенение, и более эффективное выгорание горючих смесей;
  • в случае если по каким-то причинам вышел из строя транзистор, всегда можно перекинуть провода в стандартное положение, и автомобиль продолжит работать.

Ремонт и замена коммутатора

Рано или поздно, как и любой механизм, коммутаторы системы зажигания тоже выходят из строя. И здесь совершенно неважно, какой именно прерыватель был установлен на автомобиле - ремонту эти узлы, как правило, не подлежат. Конечно, если у вас есть определенные навыки в электронике и радиотехнике, то перепаять вышедшую из строя деталь коммутатора будет совсем несложно.

Но, как показывает практика, гораздо меньше мороки, купить новый прерыватель, и установить его. Дело в том, что перепаянные выключатели крайне ненадежны, и могут подвести в самое неподходящее время.

Поэтому простой совет:

  • Ремонт коммутатора системы зажигания - это не вариант, покупайте новый!

Ниже несколько советов, где и какие коммутаторы лучше покупать. За основу возьмем ситуацию, когда нужен бесконтактный выключатель.

Какие коммутаторы и где покупать

Естественно, если у вас иномарка, то приобретение нужных вам запчастей лучше производить в соответствующих дилерских центрах, или магазинах, которые официально представляют компанию производителя вашего автомобиля. Ну а если, вы счастливый обладатель, прекрасного наследия Советского автопрома, поиски требуемых вам деталей можно смело начинать на авто и радиорынках. Правда, нужно быть осмотрительным.

Основываясь на многолетнем опыте, и на практических тестах, которые лично проводились над многими марками бесконтактных выключателей, можно выделить два коммутатора системы зажигания, которые отлично зарекомендовали себя.

  1. Коммутатор аварийный К562.3734 (или К563.3734 ТУ11 КЖЩГ 023-94).
  2. «Калашников и К° Плазменное зажигание» ТУ 4573-001045363119-97.

Почему именно они? Во-первых, оба выключателя производятся на отечественных заводах. Они рассчитаны для работы именно в наших условиях, все остальные аналоги, будь-то китайские или корейские, не выдерживают тех нагрузок, к которым привычны автомобили советского производства. Во-вторых, как уже говорилось выше, опытным путем было установлено, что только эти коммутаторы достаточно стабильно выдают приемлемые результаты токового разрыва.

Первый, за счет своей оригинальной схемы, по которой он был собран, формирует импульсные разряды, которые позволяют достигать амплитуды тока до 12-13А, при этом потребляемая величина токового заряда составляет всего 2А, и зависит от частоты вращения вала. Еще одним существенным преимуществом этого коммутационного устройства является умеренный температурный режим, в котором он работает. Хотя есть и очевидные недостатки, размеры самого коммутатора могли бы быть несколько меньше.

Второй, это, вообще, инновационное ноу-хау. Коммутатор «Калашников и К° Плазменное зажигание» соединяет в себе два устройства: основной рабочий блок, и запасной. Как и предыдущий выключатель, этот показал достаточно высокие показатели и в продолжительности искрового момента, и в силе импульса разрывного тока.

Но его главное достоинство заключается не в основном блоке, а в резервном, который рассчитан на работу в тех условиях, когда из строя выйдет не только основной блок коммутатора, но и датчик Хола. В последнем обстоятельстве пришлось убедиться самостоятельно.

«Калашников и К° Плазменное зажигание» для работы был установлен на девятку в стандартной комплектации, и когда из строя вышел основной блок коммутатора системы зажигания, пришлось переключиться на резервный. Единственный минус - делать это приходится вручную. При включении блок моментально отреагировал приветствующим писком испод капота. Конечно, давать газу на нем не получится, не позволяет принцип устройства системы коммутатора, но поддерживая минимальные обороты, можно добраться до гаража или станции техобслуживания.

Коммутаторы - это промышленные устройства, которые могут располагаться отдельно либо быть составной частью какой-нибудь электронной системы.

Принцип работы коммутатора заключается в выборе нужной электрической цепи и подключения ее к входной цепи.

Современные коммутаторы бывают одно-, двух- или многоканальными и имеют также аварийный режим работы. Многоканальность обеспечивает большую надежность и стабильность работы той системы, куда подключен коммутатор. Фото одного из устройств данного вида представлено ниже.

В авто и мототехнике коммутатор представляет собой своеобразный микрокомпьютер, что вырабатывает и подает токовый импульс на катушку зажигания (на свечу, которая поджигает топливо в моторе).

В компьютерных сетях также существуют коммутирующие устройства, например, ethernet. Принцип работы коммутатора ethernet заключается в том, что, когда приходит пакет для определенного адреса, он находит его порт и пересылает пакет именно одному этому пользователю. В то время как другие устройства передают информацию на все порты.


Для чего предназначен коммутатор

Эти приборы широко используются в различных отраслях, а также устанавливаются на транспортные средства в качестве перераспределителей, выключателей или переключателей.

Принцип действия коммутатора такой же, что и у электронных, электромеханических, а также электронно-лучевых приборов.

Назначение коммутатора состоит в том, чтобы управлять токами катушки зажигания, опираясь на сигналы синхронизационного датчика.

В транспортном средстве цепь, где находится коммутатор, выполняет функцию тестировщика узлов систем зажигания, автоматическим путем во время переключения с бензина на газ регулирует и многое другое.

Немного истории

Следующим шагом стало создание многоканальных устройств, а затем и установка отдельной системы, состоящей из коммутатора и катушки, выполненных на каждой свече. Это дало свои преимущества:

  • стала вырабатываться более мощная искра;
  • удалось уменьшить, а затем и ликвидировать потери в трамблере;
  • получилось добиться стабильного хода на холостых оборотах;
  • заметно снился расход горючего;
  • при низких температурах улучшился запуск двигателя.

Функционирование устройства

Принцип работы коммутатора состоит в том, чтобы максимально быстро коммутировать цепь с датчиками вращения и управлять токами в катушке зажигания.

Дело в том, что сигналы, поступающие от датчиков вращения, являются слабыми, либо аналоговыми и неудобными в использовании. Поэтому для применения в системе управления их нужно не только сформировать, а еще и усилить, а затем передать первичной обмотке катушки, что позволяет осуществлять высокоскоростную коммутацию.

Многоканальные устройства способны производить управление и коммутацию сразу нескольких катушек зажигания.

Место расположения

Конструктивно коммутатор может совмещаться с электронным блоком управления двигателя, при этом управляющие сигналы с него поступают сразу на катушку зажигания.

Если конструкция такова, что устройство расположено отдельно, то оно может устанавливаться:

  • на распределителе зажигания, как у ВАЗа;
  • в непосредственной близости от катушки зажигания;
  • отдельно на поверхности из металла для осуществления теплоотвода, например, на крыле или перегородке под капотом, как у "Форда";
  • возле электронного блока управления и другое.

Например, коммутатор "Ауди" располагается под ветровым стеклом в отсеке двигателя в кожухе из водонепроницаемого материала. Там же есть разъемы для диагностических устройств.

Типы коммутаторов

Из всего разнообразия данного вида приборов для авто и мототехники предназначены следующие:

  • устройство, которое имеет высоковольтный встроенный генератор - DC CDI;
  • коммутатор, что работает только в присутствии дополнительного источника высокого напряжения - AC CDI;
  • катушка-коммутатор.

Коммутаторы DC-типа являются самыми применяемыми из-за легкого подключения, они имеют на корпусе лишь четыре контакта: датчик Холла, минус, плюс, катушка зажигания.

Данные приборы имеют широкий модельный ряд:

  • без ограничителя максимального числа оборотов или с ним;
  • с возможностью изменять фазы опережения зажигания;
  • для различных нужд - наличие дополнительных контактных групп.

Коммутаторы АС-типа отличаются от первых тем, что им не нужно постоянное наличие напряжения, и подключаются они несколько сложнее. Также они имеют очень маленькие размеры и, следовательно, более простую конструкцию. В силу этого они не обладают ограничителем максимального числа оборотов, что снижает безопасность использования техники.

Коммутаторы-катушки представляют собой самый интересный, слабоизученный и малораспространенный вид. Они соединяют в себе катушку зажигания и коммутирующий элемент, а также не оснащены датчиком Холла.

Принцип их действия заключается в прерывании тока, который протекает через высоковольтный трансформатор с низковольтной намоткой-катушкой. Само прерывание осуществляется контактным выключателем, что приводится в действие с помощью вала распределителя зажигания.

Система с механическим прерывателем имеет следующие недостатки:

  1. Из-за слишком высокого тока, протекающего в первичной обмотке катушки, в прерывателе часто вырабатывается искра, которая приводит к порче контактов: они оплавляются и обгорают.
  2. В холодное и сырое время года контакты подвергаются электрохимической эрозии.
  3. Высокий ток в контактах прерывателя приводит к тому, что продолжительность разряда искры зажигания является кратковременной, это приводит к некачественному поджиганию топлива и нестабильной работе двигателя на низких оборотах. Следовательно, требуются затраты на обогащенную смесь.

Устранение этих недостатков стало возможным с появлением высоковольтных транзисторов высокой мощности и созданием бесконтактных систем электронного зажигания.

Некоторые водители пытаются улучшить технические характеристики транспортного средства путем замены контактной системы зажигания бесконтактной от новой модели. Это затратно и трудоемко, ведь требуется поменять систему зажигания полностью и приобрести электронный коммутатор. Кроме того, не всегда удается найти подходящий к старому новый вариант коммутации зажигания.

Несмотря на это, даже если между катушкой зажигания и контактным прерывателем подключить простой коммутатор на мощном транзисторе, можно заметно повысить качество системы контактного зажигания автомобиля:

  • перестанут оплавляться контакты прерывателя из-за уменьшения тока;
  • продолжительность заряда искры увеличится примерно вдвое, что вызовет лучшее поджигание горючего;
  • систему всегда можно вернуть к первоначальному варианту простой перекоммутацией провода в случае поломки коммутатора на транзисторе.

Виды коммутаторов

Различают следующие виды:

  • стандартный (стоковый);
  • спорт;
  • с возможностью изменения фаз опережения зажигания.

Стандартный , еще называемый стоковым, коммутатор монтируется заводом-изготовителем, поэтому он рассчитан на параметры той техники, куда производится установка. Это, в свою очередь, дает гарантии того, что двигатель будет работать надежно, экономично и долго. Часто такие коммутаторы снабжены ограничителями числа оборотов, которые не только могут спасти жизнь водителю, но и сохранить долговечность агрегатов и узлов техники.

Спорт-коммутатор предназначен для того, чтобы повысить верхнюю границу оборотов двигателя. Устанавливается он вместо стандартного по желанию водителя. Но производить такую замену должны только специалисты, так как вместе с этим устройством необходимо заменить еще некоторые детали. Если этого не сделать или сделать неумело, узлы техники будут работать неправильно вплоть до скорого выхода из строя мотора.

Кроме этого, даже профессиональная замена стандартного коммутатора на спорт добавляет существенный риск аварии, если транспортным средством управляет неопытный водитель. Поэтому производить такие действия нужно крайне осторожно, осознавая предстоящий риск, особенно устанавливая такой коммутатор на скутер. Собственно, осторожность нужна всегда.

Принцип работы коммутатора с изменением фазы опережения зажигания заключается в том, что он компенсирует недостающую мощность в тех зонах оборотов, где это необходимо, и выравнивает кривую графика крутящего момента. Этим обеспечивается выигрыш в разгоне по сравнению со стандартными коммутаторами и равномерная динамика работы двигателя на различных оборотах.

Какие бывают неисправности

Признаками того, что в системе зажигания происходит сбой либо присутствует неисправность, являются такие состояния:

  • отсутствует искра на свечах, двигатель не запускается;
  • двигатель запускается, но через короткое время глохнет;
  • работа двигателя автомашины происходит со сбоями, неравномерно и приходит в нормальный режим при замене на запасной исправный коммутатор.

Обычно сбои в работе электрической части встречаются следующих видов:

  • в результате перегрузки одной или обеих первичных обмоток катушки зажигания;
  • сбой в работе высоковольтной системы.

Как проверить работу

Для того чтобы проверить работоспособность устройства, существует несколько популярных способов. В частности, для этого необходимо:

  • самый простой метод на начальном этапе - заменить прибор на заведомо работающий и сравнить результат;
  • проверить, подается ли напряжение питания на выводы прибора. Сделать это нужно двумя способами: вольтметром и нагрузкой;
  • с помощью осциллограммы проверить правильность формы входного сигнала, что подается на коммутатор;
  • тем же методом проверить форму выходного сигнала;
  • если в автомобиле оснащена вольтметром, то проверку можно провести визуально, следя за его шкалой. Для этого включается зажигание, в этот момент номинальное значение на индикаторе должно равняться примерно 12В, и коммутатор некоторое время добирает на себя напряжение. После того как зажигание будет включено, стрелка на короткое время замирает, а затем движется еще около миллиметра вправо и останавливается. Нарушение этой последовательности свидетельствует о сбое в работе коммутатора;
  • также для проверки работы зажигания можно использовать контрольную - обычную автомобильную - лампочку. Один ее контакт подсоединяется к нагрузке, а второй - на выход катушки, что соединен с коммутаторной клеммой. При исправном коммутаторе при включении зажигания лампочка будет мигать и со временем засветится более ярко;
  • также для контроля зажигания, если сбой не связан с коммутатором, нужно проверить провода, контакты и разъемы, а также осмотреть датчик Холла.

Важно не забывать, что коммутаторы, применяемые с генераторными датчиками, нельзя использовать в тех системах, что содержат датчик Холла. То же и наоборот.

Как ремонтируют коммутатор

Данное устройство играет важную роль в системе зажигания автомобиля. Принцип работы коммутатора таков, что при выходе его из строя завести двигатель машины не получится.

Однако ремонт в большинстве случаев невозможен, и прибор подлежит замене, поэтому не лишним будет иметь водителю при себе запасное исправное устройство.

Коммутатор на скутер

Как правило, в китайских и в большинстве японских скутеров используется система зажигания на основе конденсаторов. Функция конденсатора состоит в том, что после запуска мотора в нем копится энергия, и при достижении необходимого напряжения ток поступает через тиристор в катушку, где преобразовывается в силу, превыщающую входную в 60-200 раз, что и приводит к запуску двигателя скутера.

Типичным представителем устройства для скутера, содержащим в себе накапливающий напряжение конденсатор, является коммутатор "Хонда" Dio AF 34. Преимущество таких приборов в том, что искра вырабатывается всегда одной и той же мощности, что приводит к стабильности процесс запуска двигателя.

Но из-за того, что многие скутеры систему зажигания содержат конструктивно в общей схеме электроснабжения, то в случае ее короткого замыкания или перегрузки коммутатор выходит из строя первым. Поэтому есть смысл при приобретении скутера обратить внимание на те модели, где подключение коммутатора и блок зажигания смонтированы самостоятельной электрической цепью. Риск поломки в этом случае заметно снизится.

1 — свеча зажигания; 2 — провод высокого напряжения; 3 — боковой контакт распределителя; 4 — ротор распределителя; 5 — кулачок; 6 — контакты прерывателя; 7 — коммутатор; 8 — первичная обмотка катушки зажигания; 9 — вторичная обмотка; 10 — центральный провод высокого напряжения; 11 — включатель зажигания; 12 — аккумуляторная батарея; А — прерыватель; Б — база; В — катушка зажигания; К — коллектор; Э – эмиттер.

Контактно-транзисторная система зажигания явилась переходным этапом от контактной к бесконтактным электронным системам. В ней устраняется недостаток контактной системы — подгорание и износ контактов прерывателя, коммутирующих цепь с индуктивностью и значительной силой тока. В контактно-транзисторной системе первичную цепь обмотки возбуждения коммутирует транзистор , управляемый контактами прерывателя. С применением’ контактно-транзисторной системы на автомобиле появился новый блок — электронный коммутатор(7), объединяющий в себе силовой коммутирующий транзистор и элементы схемы его управления и защиты.

Прежде, чем разбирать систему, давайте разберёмся, что такое транзистор.

Транзисторами называют полупроводниковые приборы, предназначенные для усиления, генерирования и преобразования электрических колебаний.

У транзистора три вывода: коллектор, эмиттер и база.

Так вот, по пути Коллектор-Эмиттер течёт Коллекторный ток(Ik). По другому пути База-Эмиттер течёт слабый управляющий ток(Iб). И вот при помощи этого тока базы управляется коллекторный ток(его величина).

Причем, коллекторый ток всегда больше тока базы в определенное количество раз. Эта величина называется коэффициент усиления по току, обозначается h21э . У различных типов транзисторов это значение колеблется от единиц до сотен раз.

Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу .

Теперь, давайте вернёмся к нашей системе зажигания)

1 — аккумуляторная батарея; 2,3 — контакты выключателя зажигания; 4,5 — добавочные резисторы; 6 — коммутатор; 7 — прерыватель

На рисунке представлена схема контактно-транзисторного зажигания с коммутатором ТК 102.

При замыкании контактов прерывателя(7) через них начинает протекать ток базы транзистора VT1 , который открывается и включает первичную обмотку катушки зажигания к источнику питания.

При размыкании контактов прерывателя транзистор VT1 закрывается , ток в первичной цепи резко прерывается и на свечах появляется всплеск высокого напряжения, как и в контактной системе.

Характеристики контактно- транзисторной системы аналогичны контактной, за исключением того, что снижения вторичного напряжения на низких частотах, вращения кулачка не происходит. Импульсный трансформатор Т в схеме ускоряет запирание транзистора, цепь VD1, VQ2 защищает транзистор от перенапряжений, а конденсатор С2 — от случайных импульсов напряжения по цепи питания. Конденсатор С1 способствует уменьшению коммутационных потерь, в транзисторе. Добавочный резистор 4 закорачивается при пуске двигателя.

Срок службы контактов прерывателя, в контактно-транзисторной системе больше, чем в контактной, так как базовый ток, коммутируемый ими, невелик. Однако механический износ прерывательного механизма, влияние вибраций на работу контактов в системе не устранены.

Специфические особенности работы транзистора в цепи катушки зажигания предопределяет необходимость полного электрического разделения первичной и вторичной обмоток (в обычной катушке два вывода обмоток соединены), а так же отсутствие конденсатора. Катушка транзисторной системы зажигания имеет большее отношение числа витков вторичной и первичной обмоток. Наиболее распространенной отечественной контактно-транзисторной системой зажигания является ТК-102. К системе зажигания добавляется коммутатор, резистор и заменяется катушка зажигания. Преимуществом этой системы зажигания является возможность увеличения искрового промежутка свечи, стабильность работы двигателя на режимах прогрева, холостого хода и малых нагрузок, улучшение пусковых качеств, особенно при низком напряжении аккумулятора, повышение долговечности контактов прерывателя.

Давайте ещё раз последовательно взглянем на работу системы:

1 - свеча; 2 - ротор; 3 - распределитель; 4 - контакты; 5 - коммутатор; 6,7-обмотки; 8 - выключатель

Работает система следующим образом: при включенном выключателя зажигания(8) после замыкания контактов 4 прерывателя транзистор коммутатора(5) открывается(т.к. пошёл ток базы, который открывает транзистор), и по первичной обмотке(7) катушки зажигания будет протекать ток. В момент размыкания контактов прерывателя транзистор коммутатора запирается(т.к. пропадает ток базы). Ток в первичной цепи резко уменьшается, и во вторичной обмотке(6) катушки зажигания создается ток высокого напряжения. Он подводится к ротору(2) распределителя зажигания(3), который распределяет ток высокого напряжения по свечам зажигания(1) в соответствии с порядком работы двигателя.

Ещё советую глянуть видео:

Думаю, теперь понятно, как это работает. Теперь, предлагаю перейти к рассмотрению к более современной системе зажигания.

Транзисторный коммутатор зажигания

Известно, что большая часть российских автомобилей оснащена простыми контактными системами зажигания, основанными на принципе переключения тока, протекающего через низковольтную обмотку высоковольтного трансформатора, которым является катушка зажигания. Переключения тока осуществляется при помощи механического прерывателя, представляющего собой контактный выключатель, приводимый в действие от вала распределителя зажигания.

Такая система имеет массу недостатков, так как ток, протекающий через первичную обмотку катушки зажигания слишком высок и в результате в прерывателе возникает искрение, неизбежно приводящее к обгоранию и оплавлению его контактов, а в зимнее, осеннее или весеннее время добавляется электрохимическая эрозия этих контактов. Но это еще не все, длительность искрового разряда, в результате высокого тока, протекающего через контакты прерывателя получается небольшой, 0,3-0,8 ms, а в результате некачественное поджигание горючей смеси, требуется более обогащенная смесь, плохая приемистость двигателя на низких оборотах, повышенный расход топлива. Все эти недостатки известны давно, и с тех пор как появились мощные высоковольтные транзисторы автомобильная промышленность постепенно переходит на комплектацию новых автомобилей бесконтактными электронными системами зажигания, в которых используется бесконтактный датчик зажигания, электронный коммутатор с мощным высоковольтным транзистором на выходе, а также более мощная низкоомная катушка зажигания.

Улучшить характеристики автомобиля с контактной системой зажигания можно путем установки бесконтактной системы от более новой модификации данной марки. Но этот способ относительно дорог - требуется полная замена всех элементов системы зажигания, включая датчик-распределитель, катушку зажигания, а также приобретение соответствующего электронного коммутатора. К тому же не на каждую модель старого образца можно подобрать подходящие элементы от более новых моделей. Тем не менее, значительно улучшить качество зажигания простой контактной системы можно, если между контактны прерывателем тока и штатной катушкой зажигания включить несложный транзисторный коммутатор, выходной каскад которого выполнен на высоковольтном мощном транзисторе. При этом выигрыш, по сравнению с простой системой будет по нескольким позициям: во-первых, уменьшится ток через контакты прерывателя и они перестанут обгорать и коррелировать, во-вторых, длительность искрового разряда увеличится примерно в два раза, что приведет к улучшению воспламенения смеси, в-третьих, в случае выхода из строя транзисторного коммутатора можно будет простой перестановкой провода вернуть систему к исходному варианту.

Принципиальная электрическая схема коммутатора показана на рисунке.


При замкнутых контактах прерывателя через резистор R2 на базу транзистора VT1 поступает отрицательное напряжение и этот транзистор открывается. Его открывание приводит к тому, что через этот транзистор и R4 на базу мощного транзистора VT2 поступает положительное напряжение, и он открывается. Ток, через него поступает на первичную намотку катушки зажигания L1. При размыкании контактов прерывателя поступление напряжения на базу VT1 прекращается и он закрывается, а в след за ним закрывается и VT2. В катушке, в контуре, состоящем из первичной намотки L1 и конденсатора С2 возникают колебания, которые наводят импульс высокого напряжения во вторичной обмотке L1. Этот высоковольтный импульс через распределитель зажигания поступает на свечу и происходит искровой разряд. Длительность искрового разряда составляет около 2 ms, что более чем в два раза превосходит длительность искры классической системы зажигания.

Резистор R1 не первый взгляд не нужен, но как показывает практика, при пропускании через контакты прерывателя слишком низкого тока, не всегда возникает надежный электрический контакт, и возможны пропуски в работе системы зажигания. Чтобы этого избежать вводится резистор R1, который создает необходимый минимальный ток через эти контакты.

Транзистор КТ973А можно заменить на КТ816, а транзистор КТ8109А на КТ848А.

Коммутатор собирается объемным монтажом в корпусе неисправного коммутатора от бесконтактной системы зажигания автомобилей "Волга" или "УАЗ".

Настройка заключается в подборе номинала R4 (не менее 22 Ом) и R2 (не менее 300 Ом) таким образом, чтобы при подключенной катушке зажигания и замкнутых контактах прерывателя напряжение на коллекторе VT2 было минимальным (не более 1,5 В). При этом ток через катушку будет максимальным.

Субъективно, с данным коммутатором, автомобиль движется лучше на низких оборотах, лучше трогается с места на холостом ходу.

Увеличить энергию искры можно, если установить катушку зажигания с низкоомными обмотками от автомобиля ВАЗ-08-099, но при этом нужно будет воздерживаться от длительного включения зажигания при неработающем двигателе, так как ток через катушку будет высоким и это может повредить выходной транзистор коммутатора.

Факультет механический. Кафедра сельскохозяйственной техники

ЛАБОРАТОРНАЯ РАБОТА №7 по предмету «Тракторы и автомобили»

Лабораторная работа - Бесконтактно-транзисторная система зажигания

Вопросы

1. БТСЗ с магнитоэлектрическим индукционным датчиком.

2. БТСЗ с датчиком Холла.

3. Преимущества БТСЗ

4. Электрическая схема БТСЗ с магнитоэлектрическим датчиком

Бесконтактная транзисторная система зажигания

Недостатки, связанные с наличием контактов прерывателя, полностью устранили, применив системы с бесконтактным управлением моментом зажигания и механическими автоматами регулирования угла опережения зажигания. Сигналы, которые руководят моментом зажигания, формируются бесконтактными датчиками, которые устанавливают в распределителе вместо подвижной пластины, прерывателя и кулачка.

Применяют в основном два типа генераторных датчиков:

- магнитоэлектрический индукционный датчик , который устанавливают на автомобилях типа ГАЗ , ЗИЛ , Лиаз , УАЗ . Принцип работы такого датчика основывается на явлении электромагнитной индукции. Он состоит из неподвижной катушки с определенным количеством витков и постоянного магнита, который вращается от коленчатого вала двигателя;

- датчик Холла , принцип действия которого состоит в возникновении ЭДС в полупроводниковой пластине с током, который находится в магнитном поле. Магнитная система, как правило, монтируется в датчик, а коммутация магнитного потока осуществляется специальной шторкой из магнитоэлектрической стали, механически соединенной с коленчатым валом. Такие датчики устанавливают на автомобилях ВАЗ-2108 , -2109 ,-1111 , "Ока" , ЗАС-1102 "Таврия" и т. п..

Коммутация тока в первичной обмотке индукционной катушки в БТСЗ осуществляется транзистором. При этом время, в течение которого происходит накопление энергии в магнитном поле, может зависеть от частоты вращения коленчатого вала двигателя (угол поворота коленчатого вала двигателя, при котором существует ток в первичной обмотке катушки зажигания постоянный и не зависит от частоты его вращения) или не зависеть от нее (время накопления энергии нормируется).

На рис. 1 изображена принципиальная схема бесконтактной транзисторной системы зажигания с магнитоэлектрическим индукционным датчиком, который представляет собой однофазный генератор сменного тока с ротором на постоянных магнитах, число пар полюсов которого отвечает числу цилиндров двигателя. К такой БТСЗ входят также высоковольтный датчик-распределитель 2 (датчик и распределитель конструктивно объединены в один агрегат - датчик-распределитель), катушка зажигания 4 , транзисторный коммутатор 3, свечи зажигания 1 и другие элементы.

Датчики-распределители БТСЗ (рис. 2 ) изготавливают на базе традиционных распределителей, в которых контакты прерывателя заменены бесконтактным датчиком. Поэтому целесообразно рассмотреть лишь особенности их конструкции.

В корпусе 3 на подшипнике 15 установлен статор 13 магнитоэлектрического датчика импульсов. Ротор напрессован на латунную втулку 12 , которая своей подковоподобной пластиной соединена с центробежным регулятором 16 угла опережения зажигания. Статор имеет обмотки 23 и две стальные пластины - 22 и 24 . Один конец обмотки соединен с выводом 5 датчика-распределителя.

Ротор состоит из кольцевого постоянного магнита 26 и двух клювоподобных стальных наконечников 25 и 27 , размещенных с обоих торцов постоянного магнита. Один наконечник имеет северный полюс, второй - южный. Зубцы наконечника с северным полюсом входят во впадины между зубцами южного полюса.

Для правильной установки полюсных наконечников 25 и 27 на втулку 12 в каждом наконечнике есть шип, а на втулке 12 - паз.

Рис. 1 - Принципиальная схема бесконтактной транзисторной системы зажигания с индукционным датчиком:

1 - свечи зажигания; 2 - датчик-распределитель; 3 - коммутатор; 4 - катушка зажигания

Для установки зажигания на статоре и роторе нанесенные метки 20 , которые совмещают при положении поршня первого цилиндра двигателя в ВМТ конца такта сжатия.

Датчики-распределители для 6- и 8-цилиндровых двигателей отличаются лишь числом пар полюсов статора и ротора и соответствующим числом высоковольтных выводов на крышке.

В датчике-распределителе автомобилей типа ГАЗ, УАЗ и других центробежный регулятор установлен на бронзовые втулке выше статора и ротора датчика, который снижает срабатывание подшипников и облегчает регулировку центробежного регулятора угла опережения зажигания.

Во время вращения ротора датчика напряжение, которое развивается им, подается на вход транзисторного коммутатора, который коммутирует ток в первичной обмотке катушки зажигания, обеспечивает накопление энергии в ней и возникновение высокого напряжения во вторичной обмотке в момент искрообразования соответственно углу опережения зажигания.

Рис. 2 - Датчик-распределитель системы зажигания с магнитоэлектрическим датчиком:

1 - муфта распределителя; 2 - опорная пластина; 3- корпус распределителя; 4 - масленка; 5 - вывод; 6 - вакуумный регулятор; 7 - крышка распределителя; 8 - центральный угольный электрод с пружиной; 9 - внешний контакт ротора; 10 - центральный контакт ротора; 11 - ротор; 12, 19 - втулки; 13 - статор магнитоэлектрического датчика; 14 - регулировочные шайбы; 15, 17 - подшипники; 16 - центробежный регулятор опережения зажигания; 18 - валик распределителя; 20 - метки; 21 - ротор датчика; 22, 24 - пластины; 23 - обмотка; 25, 27 - полюсные наконечники; 26 - кольцевой постоянный магнит

В случае неисправности магнитоэлектрического датчика или транзисторного коммутатора применяют резервную систему зажигания , в состав которой входят аварийный вибратор РС331 (51.3747), индукционная катушка и распределитель высокого напряжения . Во время работы вибратор с определенной частотой беспрерывно размыкает круг питания первичной обмотки индукционной катушки, которая в этом случае работает в режиме беспрерывного искрообразования.

Вибратор - это электромагнитный прерыватель с контактами, заблокированными конденсаторами С7 и С8 (см. рис. 6 ). Ток от аккумуляторной батареи через выключатель S1 , дополнительный резистор СЕ326 , соединение ВК-12 и клемму ВК проходит через первичную обмотку индукционной катушки и соединение КЗ , обмотку электромагнита вибратора и дальше на корпус и клемму "-" аккумуляторной батареи. Сердечник электромагнита намагничивается, якорек реле притягивается к сердечнику, размыкая при этом контакты и круг питания. Намагничивание сердечника исчезает, и якорек обратной пружиной возвращается в исходное положение, замыкая контакты.

Во время размыкания контактов вибратора одновременно исчезает ток в первичной обмотке индукционной катушки. В процессе спадания магнитного потока во вторичной обмотке возбуждается ток высокого напряжения, который вызывает искрообразование в свече зажигания. Потом процесс повторяется. Частота вибрации контактов составляет 250- 400 Гц.

Для включения резервной системы зажигания отсоединяют провод от клеммы КЗ транзисторного коммутатора, соединяют его с выводом вибратора и при включении зажигания сразу включают стартер. Если пуск двигателя не состоялся, выключают включатель зажигания, иначе импульсы тока высокого напряжения прожгут крышку датчика-распределителя.

Итак, резервная система зажигания имеет кратковременное действие, ее ресурс представляет не более чем 30 ч, и пользуются ею лишь для того, чтобы добраться к месту технического обслуживания. Кроме того, во время работы резервной системы не работают центробежный и вакуумный регуляторы, а значит, двигатель работает с не регулированным моментом зажигания, которое приводит к неравномерности работы двигателя и перерасхода топлива.

В случае применения БТСЗ с датчиком Холла время накопления энергии в катушке зажигания остается постоянным независимо от частоты вращения коленчатого вала. Энергия искры здесь в 3-4 разы выше, чем в КСЗ. Коммутатор такой системы довольно сложный (включает микросхему, силовой транзистор, несколько резисторов, стабилитроны и конденсаторы) и нуждается в осторожности в процессе эксплуатации. В частности, отсоединение провода от свечи может привести к пробою коммутатора или распределителя.

Магнитоэлектрические датчики Холла начали применять довольно широко еще в начале 70-х годов двадцатого столетия. Они характеризуются довольно высокой надежностью, долговечностью и малыми габаритами. Недостатками таких датчиков является постоянное потребление энергии и сравнительно высокая стоимость.

Принцип действия датчика Холла заключается в том, что когда на полупроводник, по которому проходит ток, подействовать магнитным полем, то в нем возникает поперечная разность потенциалов (ЭДС Холла). Такая ЭДС может иметь напряжение лишь на 3 В меньше, чем напряжение питания.

Рассмотрим полупроводниковую пластину размером 5x5 мм (рис. 3, а ). Если по пластине между двумя параллельными сторонами пропустить ток и одновременно подвести к ней постоянный магнит, а к двум другим сторонам квадрата присоединить провода, то получим генератор Холла (см. рис. 3, б ). Если между магнитом и полупроводником разместить подвижный экран с прорезами, то будем иметь импульсный генератор Холла (см. рис. 3, в ).

Подобные системы устанавливают на автомобилях ВАЗ-2108, ВАЗ-2109, ЗАС-1102 "Таврия" и др. Они выполнены по блоково-модульному принципу.

На рис. 4 приведена схема бесконтактной системы зажигания, которую устанавливают на двигателе Мемз-245 автомобилей ЗАС-1102 "Таврия". Она состоит из катушки зажигания 6 типа 53.9705 , коммутатора 5 типа 36620.3704 , датчика-распределителя 4 типа 53.013706 , свечей зажигания 3 типа А17ДВ-10 или А17ДВР и источника питания 7 , которое включается выключателем 1 .

В датчик-распределитель входят датчик Холла, выполненный в виде функционально законченного узла с чувствительным элементом, постоянным магнитом, усилителем и коммутатором. Здесь также смонтированы центробежный и вакуумный регуляторы угла опережения зажигания, октан-корректор и распределитель тока высокого напряжения.

Рис. 3- Принцип действия импульсного генератора Холла: а - нет магнитного поля и по полупроводнику проходит ток питания в направлении АВ; б - под действием магнитного поля Н появляется ЭДС Холла - EF; в - датчик Холла

Датчик Холла через специальный разъем 2 проводами низкого напряжения соединен с коммутатором, который, в свою очередь, подключен к источнику тока и катушки зажигания.

При замкнутом выключателе 1 и вращении валика датчика-распределителя на выходе датчика Холла возникают импульсы напряжения, которые из контакта 2 разъема поступают на контакт 6 коммутатора и руководят его работой, осуществляя подачу и прерывание тока в первичном круге катушки зажигания.


Рис. 4 - Схема бесконтактной системы зажигания автомобильного двигателя Мемз-245:

1 - выключатель зажигания; 2 - разъем; 3 - свечи зажигания; 4 - распределитель; 5 - коммутатор; 6 - катушка зажигания; 7 - источник питания

В отличие от прежде рассмотренных систем зажигания, управляющие импульсы напряжения здесь формируются в датчике, который кроме гальваномагнитного элемента Холла имеет усилитель и компаратор и выполнен в виде функционально и конструктивно завершенного узла. Он выдает полностью сформированный сигнал, параметры которого не зависят от частоты вращения, условий и продолжительности эксплуатации, обеспечивает стабильные характеристики искрообразования

Такая система зажигания является системой высокой энергии. В ней применяют катушку зажигания с уменьшенной индуктивностью и активным сопротивлением первичной обмотки 0,45 ± 0,05 Ом, что дает возможность увеличить ток размыкания до 8-9 А, повысить уровень накопительской энергии и скорость роста импульса высокого напряжения до 700 В/мкс.

Тем не менее, по этим причинам на коммутатор возлагают дополнительные функции, среди которых: ограничение тока в первичном круге катушки при низкой частоте вращения вала двигателя; отключение катушки при неработающем двигателе; регулирование времени накопления энергии в катушке в зависимости от режима работы двигателя, который существенным образом снижает надежность работы коммутатора.

На рис. 5 изображена конструкция 4-х искрового датчика-распределителя 40.3706, который имеет вакуумный и центробежный регуляторы угла опережения зажигания, принцип действия которых и конструкция подобны прежде рассмотренного распределителя БТСЗ с магнитоэлектрическим датчиком импульсов.

Рис. 5 - Датчик-распределитель 40.3706 автомобилей ВАЗ-2108, ВАЗ-2109 системы зажигания с датчиком Холла:

1 - муфта; 2 - валик; 3 - маслозащитное кольцо; 4 - сальник; 5 - корпус распределителя; 6 - втулка; 7 - подшипник; 8 - недвижимая пластина; 9 - изоляционная прокладка; 10 - крышка; 11 - ротор; 12 - винт; 13 - датчик Холла; 14 - экран; 15 - втулка крепления экрана; 16 - центробежный автомат; 17 - штекерное соединение; 18 - вакуумный автомат

Датчик 13 - бесконтактный электронный, в котором используется эффект Холла. Он состоит из постоянного магнита, полупроводниковой пластины и интегральной микросхемы. Между полупроводниковой пластиной и магнитом есть зазор, сквозь который проходит стальной экран 14 с четырьмя прорезами (по числу цилиндров). Когда в зазоре находится прорез экрана, то магнитное поле действует на полупроводниковую пластину и на ней возникает разность потенциалов, которая превращается в микросхеме на сигнал на выходе датчика. Во время прохождения сквозь зазор стального экрана магнитное поле замыкается через него и не действует на полупроводниковую пластину.

Стальной экран соединен с валиком датчика-распределителя, и во время его вращения происходит импульсное действие магнитного поля на полупроводниковую пластину, а на выходе датчика формируются отрицательные импульсы напряжения определенной величины. Когда экран находится в зазоре датчика, то напряжение на выходе Uмах меньше напряжения питания приблизительно на 3 В. Если в зазор попадает прорез, то Umin< 0,4 В. Отношение периода Т к продолжительности импульса Ti равняется 3. Напряжение питания датчика 8-14 В подается по проводам от коммутатора через клеммы штекерного соединение 17. На эту самую колодку выводит сигнал из выхода датчика и идет дальше на вход коммутатора.

Центробежный регулятор угла опережения зажигания 16 закреплен на валике 2 . К втулке ведомой пластины центробежного автомата приклепан экран 14 . Таким образом, ведомая пластина составляет одно целое с экраном и они могут вращаться на валике в определенных границах.

Применение БТСЗ имеет важные преимущества , а именно:

Контакты прерывателя не обгорают (как в КСЗ) и не загрязняются (как в КТСЗ);

Нет необходимости продолжительное время восстанавливать момент зажигания, контролировать и регулировать угол запертого (разомкнутого) состояния контактов, в результате двигатель не теряет мощности по этим причинам;

Не нарушается равномерность распределения искровых импульсов по цилиндрам, поскольку из-за отсутствия контактов нет битья и вибрации их, а соответственно, и ротора распределителя;

Повышенная энергия разряда на свече в БТСЗ надежно обеспечивает зажигание рабочей смеси за разных режимов работы двигателя, который особенно эффективно во время разгона автомобиля, когда обедненность смеси не полностью компенсируется даже ускоряющим насосом.

Эффективное зажигание приблизительно на 20% снижает содержимое CO в отработанных газах и на 5% - расход топлива; обеспечивает надежный пуск холодного двигателя при низких температурах и в случае спада напряжения питания даже до 6 В.

Бесконтактные транзисторные системы зажигания могут быть установлены на автомобилях с классической системой зажигания (КСЗ). В этом случае вместо прерывателя-распределителя и катушки зажигания устанавливают три новых прибора: датчик-распределитель, другую индукционную катушку и коммутатор.

Электрическая схема бесконтактной системы зажигания с магнитоэлектрическим датчиком изображена на рис. 6 .

Эта система работает так . При включенном зажигании и неподвижном роторе датчика электрические импульсы в его обмотке не возбуждаются. При этом транзистор VT1 закрыт, его база и эмиттер имеют одинаковый потенциал. В таком случае потенциал базы транзистора VT2 несколько выше, чем эмиттера, и через переход база-эмиттер проходит ток управления по кругу: аккумуляторная батарея, выключатель S1, дополнительный резистор СЕ326 , соединение ВК12 , диод VD7 , резистор R6 , диод VD3 VT2 , резисторы R3 , R9 и направляется на корпус, т. е. к "минусовой" клемме аккумуляторной батареи.

Тогда транзистор VT2 приоткрывается и через его переход коллектор-эмиттер проходит ток управления транзистора VT3 , что приводит к открыванию транзистора VT3 , возникновение тока управления и открывание исходного транзистора VT4 . Через открытый транзистора VT4 ток поступает в первичную обмотку индукционной катушки, создавая магнитный поток. При этом ток проходит по кругу: клемма "+" аккумуляторной батареи, выключатель S1 , резистор СЕ326 , соединение ВК12 , первичная обмотка индукционной катушки, диод VD8 , переход коллектор-эмиттер транзистора VT4 , корпус, клемма "-" аккумуляторной батареи. Итак, схема подготовлена к формированию импульсов высокого напряжения.


Рис. 6 - Схема бесконтактной транзисторной системы зажигания GB

В случае вращения коленчатого вала двигателя стартером, и как следствие ротора датчика, в обмотке возбуждаются импульсы переменного тока синусоидальной формы, который через диод VD1 и резистор R1 , переход база-эмиттер транзистора VT1 и корпус поступает во второй конец обмотки датчика. При достижении наибольшего значения положительной полуволны синусоидального тока транзистор VT1 приоткрывается и шунтирует переход база-эмиттер транзистора VT2 , соединяя его базу через диод VD3 с клеммой "-" батареи. Транзистор VT2 закрывается, как следствие закрываются и транзисторы VT3 и VT4 , переходя в режим отсечения, т. е. ток через них не проходит. При этом ток в первичной обмотке индукционной катушки резко уменьшается, а ниспадающий магнитный поток возбуждает в витках вторичной обмотки ток высокого напряжения, который распределяется распределителем по свечам зажигания.

Одновременно ниспадающий магнитный поток возбуждает ЭДС самоиндукции в первичной обмотке, которая может привести к пробою транзисторов. Во избежание этого, параллельно транзистору VT4 включен стабилитрон VD9 , что обеспечивает зарядку конденсаторов С3 и С6 . При этом в контуре, который состоит из первичной обмотки индукционной катушки и конденсатора СЗ , возникают затухающие колебания, которые возбуждают во вторичной обмотке серию импульсов высокого напряжения, и как следствие поочередно еще несколько последовательных искр (до 10 и больше) в свече зажигания. Именно повышение интенсивности искрообразования есть одно из главных преимуществ электронных схем зажигания, которое повышает возможность быстрого пуска двигателя, особенно в холодную пору года. Положительный период ЭДС самоиндукции через диод VD8 по кругу обратной связи (резистора R2 и конденсатора С1 ) поступает на базу VT1 , ускоряя его открывание. Так заканчивается один цикл работы схемы, и как следствие возникновение искры в одной свече зажигания.

Для очередного срабатывания схемы нужно открыть транзистор VT4 и пропустить ток через первичную обмотку индукционной катушки. Это осуществляется так: отрицательная полуволна синусоидального тока датчика замыкает входной транзистор VT1 , в этом случае транзистор VT2 приоткрывается, а вместе с ним приоткрываются и транзисторы VT3 и VT4 , итак, ток снова начинает поступать в первичную обмотку индукционной катушки. Дальше процесс повторяется.

При незначительной частоте вращения коленчатого вала двигателя стартером частота вращения ротора датчика и, значит частота импульсов управления незначительные, что увеличивает продолжительность положительных импульсов. В результате конденсатор С1 заряжается и разряжается несколько раз, а транзисторы VT1 , VT2 , VT3 , VT4 переходят из открытого состояния в закрытый. При этом магнитный поток первичной обмотки индукционной катушки возникает и исчезает несколько раз, который и вызывает серию импульсов тока высокого напряжения и искр в свече зажигания.

С увеличением частоты вращения коленчатого вала двигателя до 600 мин-1 и выше увеличивается частота вращения ротора датчика и, значит количество импульсов управления, продолжительность которых соответственно уменьшается. Одновременно уменьшается частота зарядки и разрядки конденсатора С1 в круге обратной связи, колеблющийся процесс в контуре первичной обмотки индукционной катушки и конденсатора С3 прекращается и в схеме возбуждается лишь один импульс тока высокого напряжения, а в свече зажигания возникает лишь одна искра.

Стабилитроны VD5 и VD6 защищают транзисторный коммутатор от возможного превышения напряжения в системе электропитания машины. Так, в случае повышения напряжения генератора до 17-18 В (вместо 14 В) через стабилитроны VD5 и VD6 ток проходит в обратном направлении, от клеммы "+" генератора через резистор R5 на переход база-эмиттер транзистора VT1 . При этом последний приоткрывается и обуславливает закрытие транзисторов VT2 , VT3 и VT4 , что приводит к нарушению работы системы зажигания и свидетельствует о необходимости регулирования напряжения генератора.

Опережение зажигания осуществляется рычажками центробежного регулятора 16 (см. рис. 2), которые при повышении частоты вращения валика датчика-распределителя через пластину прокручивают ротор датчика в сторону вращения. При этом управляющий импульс подается на транзисторный коммутатор несколько раньше и угол опережения зажигания также увеличивается. Вакуумный регулятор 6 действует при изменении давления во всасывательном трубопроводе двигателя и мембрана, перемещаясь в ту или другую сторону, через тягу поворачивает статор 13 относительно ротора, соответственно изменяя угол опережения зажигания.

Крышка 7 распределителя, в частности данного распределителя, имеет девять выводов, из которых восемь соединены проводами высокого напряжения со свечами зажигания, а центральный - через угольный подвижный электрод типа ДСНК - с контактной пластиной ротора 11 . Угольный электрод имеет активное сопротивление 6-15 кОм и, кроме пропуска тока высокого напряжения, уменьшает радиопомехи от системы зажигания. Итак, ротор, вращаясь, распределяет импульсы высокого напряжения по неподвижным контактам высоковольтных выводов крышки, соединенных с свечами в порядке работы цилиндров двигателя.

Применение агрегатов в разных системах зажигание приведено в табл. 1.

Применение агрегатов систем зажигания

систем зажигания

Прерыватель или датчик-

Электронный

Дополнительный

автомобиля

распределитель

зажигание

коммутатор

резистор

Контактные системы зажигания

ГАЗ-24, УАЗ-

452ВС, -469БМ

"Москвич-2140",

ІЖ-2125, -2715

Контактнотранзисторные системы зажигания

"Урал-375ДМ"

ПАЗ, КАвЗ

Бесконтактные электронные системы зажигания

ВАЗ-2108, -2109

Микропроцессорные системы зажигания

ВАЗ-21083-02,

"Москвич-2141"

*1 - экранированное выполнение; *2 - в комплекте с аварийным вибратором РС331; *3 - в комплекте с аварийным вибратором 51.3734-01; *4 - коммутатор

Все рассмотренные схемы систем зажигания имеют режим одноразового искрообразования, продолжительность которого даже в лучших образцах достигает 2,5-3,0 мс. Увеличить его или ввести режим многоразового искрообразования без дальнейшего осложнения схемы практически невозможно. Это побуждает конструкторов к поиску других функциональных и конструктивных решений, включение в устройстве управления микропроцессоров и микроконтроллеров для автоматической установки оптимального момента зажигания, применение блоково-модульного принципа построения систем с унификацией функциональных модулей и взаимозаменяемостью.

Контрольные вопросы.

1. Каким образом устранили недостатки КТСЗ, применив БТСЗ.

2. Назовите типы генераторных датчиков в БТСЗ?

3. Из чего состоит БТСЗ с магнитоэлектрическим датчиком?

4. Из чего состоит магнитоэлектрический датчик?

5. Принцип работы магнитоэлектрического датчика.

6. Какие регулировки предусмотрены в датчике-распределителе БТСЗ для установки угла опережения зажигания?

7. Что применяют в БТСЗ в случае неисправности магнитоэлектрического датчика и транзисторного коммутатора?

8. Из чего состоит резервная система зажигания?

9. Принцип работы резервной системы зажигания.

10. Как включают в работу резервную систему зажигания?

11. На чем основан принцип действия датчика Холла?

12. Из чего состоит датчик Холла?

13. Составляющие БТСЗ с датчиком Холла.

14. Преимущества применения БТСЗ.

1. Описать возможные варианты БТСЗ.

2. Зарисовать схему БТСЗ с магнитоэлектрическим датчиком (рис. 1), ее составляющие.

3. Описать устройство и работу магнитоэлектрического датчика в БТСЗ.

4. Описать назначение, подсоединение, составляющие и работу резервной системы зажигания.

5. Описать принцип действии и конструкцию датчика Холла.

Список литературы.

1. А. М. Гуревич и др. Конструкция тракторов и автомобилей. М.: Агропромиздат, 1989. – с. 309-310

2. В. А. Родичев. Тракторы и автомобили. М.: Колос, 1998. – с. 284-286, с. 301-304.

3. М. Ф. Бойко. Трактори та автомобілі. Єлектрообладнання. 2 частина. Київ. Вища освіта, 2001 – с. 92-105.