Печь для сушки изоляции электрического провода. Сушка изоляции обмоток электрических машин Сушка бумажной изоляции

Сушке подвергаются электрические машины при увлажнении изоляции обмоток и других токоведущих частей , например, при транспортировке, хранении, монтаже и ремонте, а также при длительном останове агрегата.

Сушка изоляции обмоток электрических машин без особой необходимости вызывает дополнительные неоправданные расходы, а при неправильном ведении режима сушки, кроме того, происходит порча обмотки.

Назначение сушки - удаление влаги из изоляции обмоток и повышение сопротивления до значения, при котором электрическую машину можно поставить под напряжение. Абсолютное сопротивление, МОм, изоляции для электрических машин, прошедших капитальный ремонт, должно быть не менее 0,5 МОм при температуре 10 - 30° С.

Для вновь установленных электрических машин это значение должно быть не ниже значений, приведенных в табл. 2, а у электродвигателей напряжением выше 2 кВ или более 1000 кВт, кроме того, необходимо определить мегаомметром ka6c или отношение R60/ R15.

Если полученные данные указывают на неудовлетворительное состояние изоляции, электрические машины подвергаются сушке.

Удаление влаги из изоляции обмотки электрической машины происходит за счет диффузии, вызывающей перемещение влаги в направлении потока тепла от более нагретой части обмотки к более холодной.

Перемещение влаги происходит вследствие перепада влажности в разных слоях изоляции, из слоев с большей влажностью влага перемещается в слои с меньшей влажностью. Перепад влажности в свою очередь создается перепадом температуры. Чем больше температурный перепад, тем интенсивнее происходит сушка изоляции. Например, нагревая внутренние части обмотки током, можно создать перепад температуры между внутренними и внешними слоями изоляции и тем ускорить процесс сушки.

Для ускорения сушки обмотки, нагретые до предельной температуры, целесообразно периодически охлаждать до температуры окружающей среды. Пои этом эффективность термической диффузии получается тем большей, чем быстрее охлаждаются поверхностные слои изоляции.

Табл. 1. Ориентировочная продолжительность сушки электрических машин

Электрические машины Минимальное время, ч, для достижения температуры Продолжительность сушки, ч
50 °С 70 °С общая минимальная после достижения установившегося сопротивления изоляции, МОм
Малой и средней мощности 2 - 3 5 - 7 15 - 20

3 - 5

Большой мощности открытого исполнения 10 - 16 15 - 25 40 - 60 5 - 10
Большой мощности закрытого исполнения 20 - 30 25 - 50 70-100

10 - 15

В процессе сушки нагревать обмотки и сталь нужно постепенно, так как при быстром нагревании температура внутренних частей машины может достигнуть опасного значения, в то время как нагревание наружных частей будет еще незначительным.

Скорость подъема температуры обмотки во время сушки не должна превышать 4 - 5°С в час. Согласно ПТЭ электроустановок потребителей измерение сопротивления изоляции относительно корпуса машины и между обмотками производят для обмоток электрических машин напряжением до 660 В включительно на 1000 В, а у электрических машин напряжение выше 660 В - мегаомметром на 2500 В.

Однако согласно ГОСТ 11828 - 75 сопротивление обмоток электрических машин на номинальное напряжение до 500 В включительно измеряют мегаомметром, рассчитанным на 500 В, обмоток электрических машин на номинальное напряжение выше 500 В - мегаомметром на 1000 В. Следовательно, ПТЭ в некоторой степени ужесточают требования по испытанию изоляции мегаомметром.

Производится при температуре обмоток 75°С. Если сопротивление изоляции обмоток было измерено при другой температуре, но не ниже 10 °С, оно может быть пересчитано на температуру 75 °С.

Перед сушкой изоляции обмоток электрических машин помещение должно быть очищено от мусора, пыли и грязи. Электрические машины должны быть тщательно осмотрены и продуты сжатым воздухом. Во время сушки измеряют сопротивление изоляции каждой обмотки электрической машины по отношению к заземленному корпусу машины и между обмотками (рис. 1).

Каждый раз перед измерением необходимо устранять остаточные заряды в изоляции, для этого обмотку заземляют на корпус на 3 - 4 мин. Кроме того, при сушке обмоток электрических машин необходимо измерять температуру обмоток, окружающего воздуха, ток сушки. Практически в результате сушки обмоток электрических машин сопротивление изоляции при температуре 750°С должно быть не ниже данных табл. 2.

Табл. 2. Наименьшие допустимые сопротивления изоляции обмоток электрических машин после сушки

Машины или их части Наименьшее допустимое сопротивление изоляции
Статоры машин переменного тока с рабочим напряжением: выше 1000 В 1 МОм на 1 кВ рабочего напряжения
до 1000 В 0,5 МОм на 1 кВ
Якори машин достоянного тока на пряжением до 750 В включительно 1МОм на 1 кВ
Роторы асинхронных и синхронных электродвигателей (включая всю цепь возбуждения) 1 МОм на 1 кВ, но не менее 0,2 - 0,5 МОм
Электродвигатели напряжением 3000 В и более: статоры 1 МОм на 1 кВ
роторы 0,2 МОм на 1 кВ

Сушка обмоток электрических машин способом индукционных потерь в стали

В последние годы внедрены рациональные способы сушки электродвигателей индукционными потерями в стали статора при неподвижных машинах, не связанные с прохождением тока непосредственно в обмотках. При этом способе сушки имеются две разновидности: потерями в активной стали статора и потерями в корпусе статора.

Нагрев электродвигателей осуществляется потерями на перемагничивание и в активной стали статора электродвигателя переменного тока или индуктора машины постоянного тока от создаваемого в машинах переменного магнитного потока в сердечнике статора и корпусе машины.

Создается специальной намагничивающей обмоткой, наматываемой на корпус машины по наружной поверхности его с протягиванием проводников под станину (рис. 1, а) или на корпус и подшипниковые щиты (рис. 1, б), переменный магнитный поток может быть также создан индукционными потерями в активной стали статора и корпусе электрической машины (рис. 1, в).

Ротор асинхронной или синхронной машины должен быть вынут для возможности намотки на статор намагничивающих витков.

Рис. 1. Сушка электрических машин за счет индукционных потерь в стали: о-в корпусе машины, б - в корпусе и подшипниковых щитах, в - в корпусе и активной стали статора

Намагничивающая обмотка выполняется изолированным проводом, сечение и количество витков определяется соответствующим расчетом.

В процессе сушки сопротивление изоляции обмоток электрических машин в первый период сушки снижается, в дальнейшем возрастает и, достигнув некоторого значения, становится постоянным. В начале сушки сопротивление изоляции измеряют через каждые 30 мин, а при достижении установившейся температуры - через каждый час.

Результаты заносят в журнал сушки и одновременно вычерчивают кривые (рис. 2) зависимости сопротивления изоляции и температуры обмоток от продолжительности сушки. Измерения сопротивления изоляции, температуры обмоток и окружающей среды продолжают до полного охлаждения электрической машины.

Сушку обмоток электрической машины прекращают после того, как сопротивление изоляции будет при постоянной температуре практически неизменным в течение 3 - 5 ч и ka6c будет не ниже 1,3.


Рис. 2. Кривые зависимости сопротивления изоляции 2, коэффициента абсорбции 3 и температуры обмотки 1 электрической машины от продолжительности сушки

Сушка изоляции обмоток электрического двигателя в сушильной печи

Страница 44 из 45

Несмотря на то, что операция сушки и прописки чрезвычайно важна для получения надлежащего качества кабеля, методы сушки и пропитки у разных заводов очень разнообразны. Проф. Whitehead, опубликовавший з 1928 г. свое исследование по сушке и пропитке кабелей, начатое им по поручению Американского института инженеров-электриков, говорит, что на американских заводах им найдены в этом отношении самые широкие вариации, а именно от шести суток сушки при высоком вакууме и при предварительной подсушке на воздухе до полного отсутствия сушки при 20 час. проварки в горячей пропиточной массе и при пониженном давлении. Такое же разнообразие наблюдается и в Европе, причем здесь особняком стоит способ Heaver’a, применяемый на английском заводе Glover’a, о чем уже упоминалось выше. Все это показывает на отсутствие единообразия в понимании значения процесса и его хода и на сравнительно малую его экспериментальную проработку.
Известно, что качество диэлектрика очень сильно зависит от присутствия в нем влаги, поэтому полное ее удаление очень важно. В изоляции кабеля перед сушкой содержится очень много влаги, для удаления которой без принятия особых мер требуется очень много времени. Н. Mailer приводит по этому поводу следующий простой расчет:
Кабель на 35 кВ, 395 м.n. при длине в 1 000 т, имеет вес бумаги 2000 кг, что при 7% влажности дает содержание воды в кабеле 140 кг. Если такой кабель поместить в вакуум-аппарат объемом 8 м3 и сушить током сухого воздуха при 20° С, то объем вакуум-аппарата нужно переменить 1000 раз при условии, что воздух будет удаляться каждый раз полностью насыщенным влажностью. Потребность в таком большом объеме сухого воздуха при естественной сушке показывает на необходимость применения при сушке искусственных мер: нагрева и вакуума. Однако то и другое имеет свои недостатки: высокий вакуум очень сильно затрудняет теплопередачу от стенок котла к кабелю; количество пара, заключающееся в данном объеме вакуум-аппарата, при пониженном давлении меньше, чем при высоком; быстрое испарение вызывает быстрое падение температуры кабеля, что затрудняет сушку. Поэтому обычный, или, как говорят англичане, "рутинный", способ сушки в основном состоит в том, что погруженный в вакуум-аппарат кабель сначала нагревается при атмосферном давлении и при открытой крышке котла с помощью пара, пропускаемого в змеевик или рубашку котла. Этот подогрев длится в течение от нескольких часов до 2-3 суток при температуре 110-120 С, причем время устанавливается согласно производственному опыту или лабораторной проверке. После такого подогрева котел закрывается крышкой и в нем создается вакуум, при котором сушка продолжается при той же температуре 110 - 120° С. Большей частью дается вакуум порядка 90-95%, однако новые современные установки достигают давления до 5 мм и даже до 2 мм рт. ст., а для особо высоковольтных кабелей с помощью ртутных насосов лабораторного типа достигают и более высокого вакуума. При столь высоких вакуумах необходимо применять сваренную под вакуумом пропиточную массу, так как иначе она сильно пенится при впуске в котел.
Как во время процесса подогрева, так и во время процесса сушки не все элементы кабеля одинаково повышают свою температуру. Как показывают измерения, медная жила кабеля достигает температуры в 100-110° С только через очень продолжительное время непрерывной сушки, порядка суток и более; через 5-6 час. эта температура достигает величины порядка только 60-80° С. Иногда сушку при вакууме прерывают впуском сухого газа (воздуха или предпочтительно углекислоты), добиваясь тем повышения температуры жилы, а затем снова дают вакуум: это так называемая сушка толчками. Нужно иметь в виду, что при перерыве вакуума повышается температура испарения воды, поэтому прекращается и сушка кабеля. В настоящее время вместо сушки толчками часто применяют подогрев жил электрическим током, что очень сильно ускоряет процесс сушки. Такой подогрев всегда ведется постоянным током, ибо при переменном токе требуется очень высокое напряжение источника тока благодаря высокому индуктивному сопротивлению сушимого кабеля. Вообще говоря, ускорение процесса сушки выгодно не только в смысле лучшего использования оборудования и экономии пара, которым обогревается вакуум-сушильный аппарат, но и в отношении улучшения качества изоляции, так как бумага при длительном нагреве может повреждаться. Сушка током экономически обычно не выгодна, так как поглощает большое количество энергии, но все же имеются основания ее применять, если нет достаточного количества вакуум-аппаратов или если желают сократить процесс.
Для низковольтных кабелей напряжением до 3 кВ, а иногда и до 6 кВ, процесс сушки часто совсем опускается и заменяется варкой в горячей массе обычно предварительно подогретого током кабеля. Влага при этом "варочном способе" удаляется во время процесса варки. Такой способ имеет некоторые экономические преимущества, но никаких технических преимуществ в смысле улучшения качества кабеля он не дает. При варочном способе рекомендуется предварительный подогрев кабеля электрическим током или иным способом, так как иначе холодный кабель слишком сильно понижает температуру пропиточной массы и тем затрудняет процесс варки.
При изготовлении кабеля на очень высокое напряжение, перед концом сушки вакуум-аппарат иногда наполняется углекислотой, которая затем эвакуируется. Назначение этой операции заключается в том, чтобы заменить, с одной стороны, химически активный кислород остаточного воздуха нейтральной углекислотой, а с другой стороны, для уменьшения внутренних пустот в кабеле, так как углекислота значительно больше растворяется в пропиточной массе, чем воздух, что влечет за собой уменьшение первоначальных пустот.
Процесс сушки и пропитки кабеля ведут обычно в одном и том же котле, чтобы избежать соприкосновения кабеля с воздухом, ибо сухой кабель очень гигроскопичен. Горячая пропиточная масса всасывается благодаря вакууму, господствующему в котле. Температура всасываемой массы обычно имеет порядок 115-135° С, а по Н. Mflller’y даже 140° С. Столь высокая температура пропиточной массы вызывается необходимостью, поскольку в конце сушки температура медной жилы далеко не достигает 100° С, а так как пенетрация массы через бумагу прекращается около 80° С, то при более низкой температуре впускаемой массы легко может получиться опасность недопропитки кабеля, так как масса особенно сильно должна остывать у относительно холодной медной жилы и прилегающих к ней слоев изоляции. Вторым обстоятельством, вызывающим необходимость высокой температуры пропиточной массы, является то, что для проникновения массы во все поры бумаги нужна горячая масса, когда вязкость ее достаточно мала.
Для того чтобы получилась хорошая и глубокая пропитка, процесс всасывания массы в котел должен быть достаточно медленным и продолжаться не менее 1-2 час. Если всасывание будет идти быстро, то в кабеле будет много воздуха, ибо абсолютного вакуума в котле достичь невозможно. Кроме того, входящая в вакуум-аппарат пропиточная масса сильно пенится, так как при уменьшенном давлении из нее начинают выходить растворенные в ней газы, при медленной же пропитке часть этих газов удаляется с помощью отсоса насосами. В хорошо устроенных установках для пропитки высоковольтных кабелей пропиточная масса дегазируется и в предупреждение обратного растворения в ней газов и для предупреждения окисления держится под вакуумом; такая масса при пропитке уже не пенится. Иногда массу хранят под азотом, который имеет малый коэффициент растворимости.
Для того чтобы улучшить пропитку, ее ведут иногда толчками, меняя вакуум на давление, дальнейшие подробности этого метода пропитки будут даны дальше при описании контроля сушки и пропитки. Иногда при пропитке применяется повышенное на 3-4 at давление с целью вогнать пропиточную массу в кабель. Для того чтобы допустить такую пропитку, котлы фирмы Krupp рассчитываются на это повышенное давление. Практика, однако, не оправдала полностью этого метода, как это будет видно из дальнейшего, и он теперь почти повсеместно оставлен.
Пропитка кабеля должна быть возможно полной, чтобы обеспечить хорошие диэлектрические и термические свойства кабеля. Так как пропиточная масса обладает очень высоким коэффициентом термического расширения, то кабель перед наложением свинцовой оболочки необходимо охладить. Хорошая практика для высоковольтных кабелей ведет охлаждение так, чтобы температура охлажденного кабеля была бы на 4-5° С выше температуры окружающего воздуха, причем охлаждение ниже температуры окружающего воздуха не допускается во избежание осаждения на кабель влаги из окружающей среды.
Описание процесса сушки и пропитки и оборудования начнем с изложения изготовления масло-канифольной пропиточной массы. Варка этой массы ведется или в тех же вакуум-аппаратах, в которых пропитывается кабель, или, что более удобно, в специальных котлах. На фиг. 207 изображен один из таких котлов фирмы Rot, этот котел имеет диаметр 4,2 м, нагревается змеевиком и снабжается мешалкой, делающей 30 об мин. В такие котлы обычно сначала загружается канифоль, а затем заливается масло. Варка ведется при паровом подогреве в течение нескольких часов при температуре около 120° С до тех пор, пока вся канифоль не растворится в масле и не прекратится ее вспенивание, зависящее от выделения паров и влаги. Пропиточную массу для высоковольтных кабелей варят под вакуумом с целью устранения растворения в ней газов и предупреждения окисления. Свежесваренная масса должна обычно выстаиваться в течение нескольких суток, для того чтобы дать возможность оксикислотам, содержащимся в канифоли, выпасть из раствора, в противном случае они со временем могут выпасть в кабельной изоляции. Иногда на кабельных заводах ставится контактная очистка масла с помощью отбеливающих глин. Часто также применяется и фильтрация масла через обычные фильтры для устранения механических загрязнений.

Оба эти вида сушки распространены примерно одинаково, только сушка на барабанах в громадном большинстве случаев производится в вертикальных, а не в горизонтальных котлах, как это изображено на фиг. 210. Относительные достоинства и недостатки сушки на барабанах и в корзинах заключаются в следующем:

Фиг. 207. Котел для варки пропиточной массы фирмы Rot.
кабели поступают в сушку и пропитку или намотанными на железные барабаны, на которые они принимаются с трехфазных машин, или же в так называемых железных корзинах, в которые они перематываются с барабанов. Сушка кабелей на барабанах изображена на фиг. 208, на которой показаны три барабана с кабелями, приготовленные для сушки в горизонтальном котле и соединенные между собой и с особыми клеммами для сушки электрическим током. Вид корзины приведен на фиг. 209, где изображена дырчатая корзина, переделанная в глухую.

Фиг. 208. Сушка кабеля на барабанах в горизонтальных котлах.

При сушке в корзине кабель нужно по меньшей мере один раз перемотать в корзину с приемного барабана, причем в этом случае кабель идет в свинцовый пресс "против перьев", т. е. при верхнем слое бумаги, наложенном с положительной перекрышей, бумага может задраться в прессу.


Фиг. 209. Корзина для сушки и пропитки кабеля.
Преимущества сушки в корзинах заключаются в том, что корзину можно сделать глухой, т. е. без отверстий, открытой только сверху, что позволяет вести охлаждение кабеля не в вакуум-аппарате, а в особом помещении, что сильно повышает использование вакуум-аппаратов, с одной стороны, и позволяет вести процесс изготовления кабеля без соприкосновения неохлажденного кабеля с воздухом, с другой стороны.

Фиг. 210. Схема сушки в вертикальном котле.

При сушке на барабане лишняя перемотка кабеля отпадает, но становится почти неизбежным перенос кабеля по воздуху после пропитки в особые охлаждающие баки, так как в противном случае использование оборудования для сушки и пропитки будет ничтожно малым. Кроме того, очень трудно тонкие кабели опрессовывать с барабанов, так как требуется большое усилие для проворачивания барабана в густой холодной массе. Затем при обычно применяемой сушильно-пропиточной аппаратуре кабели на барабанах нужно перед сушкой кантовать на ребро.
Вакуум-сушильные аппараты можно подразделить на следующие три типа: вертикальные котлы, горизонтальные котлы и сушильные шкафы. Схема вертикального котла приведена на фиг. 210, здесь внутри котла изображен пунктиром погруженный в котел барабан с кабелем. Схема горизонтального котла изображена на фиг. 211, такой котел открывается посредством передвижения каретки с укрепленной на ней крышкой котла; этот котел совершенно не приспособлен для приема корзин. На фиг. 212 изображен вид сушильного шкафа фирмы Krupp; этот шкаф снабжен поворотными тарелками, на которые ставятся корзины с кабелем. Такие шкафы годны только для сушки кабеля, причем кабель должен быть обязательно перемотан в корзины.
Для пропитки силовых кабелей наиболее принятым типом котла является вертикальный котел. Современные котлы для кабелей очень высокого напряжения строятся очень большими, а именно для приема корзин до 3 и 4 л в диаметре, для обычных же потребностей ограничиваются котлами для корзин диаметром 2-2,5 м. Обычно в один котел входит от двух до трех корзин. В этих котлах можно вести сушку и на барабанах. Большим удобством этого типа котлов является то, что во время пропитки можно наблюдать при открытой крышке за состоянием зеркала массы и по его состоянию судить о том, кончилась пропитка или нет, так как после окончания пропитки из массы не должно выделяться пузырей газа и влаги. Обогреваются эти котлы или паровым змеевиком или паровой рубашкой. Котлы с паровой рубашкой дороже котлов с змеевиком, но лучше, так как змеевики часто расстраиваются. Кроме того, при рубашке легче чистить котел, можно применять перегретый пар, что выгодно. Дальнейшим преимуществом рубашки является то, что она легче переносит охлаждение котла путем пуска в него холодной воды.

Фиг. 211. Схема сушки в горизонтальном котле.
В Америке принято применять для нагрева котлов вместо пара масло. Против применения масла, однако, приводятся те возражения, что масло огнеопасно; развивающиеся из него продукты дестилляции требуют особого устройства для отвода; при охлажденном масле в начале процесса нужно приложить очень большое давление, что сильно удорожает установку.
Горизонтальные котлы для производства силовых кабелей употребляются очень редко, и по существу они для этого назначения не пригодны, ибо имеют следующие основные недостатки:

Фиг. 212. Сушильный шкаф фирмы Fr. Krupp, Grusonwerk.

  1. Во время пропитки масса жадно впитывается кабелем, причем быстро понижается зеркало пропиточной массы, благодаря чему возможна недопропитка верхней части барабана с кабелем, если масса не будет набираться во время самого процесса, что очень неудобно.

2. Так как котел, наполненный массой, нельзя открыть, то приходится массу из котла спускать в горячем состоянии, что вредно отражается на качестве кабеля.
Первый из этих недостатков, однако, довольно легко устраняется устройством сверху котла особых резервуаров с пропиточной массой, откуда и пополняется расход ее. Недостатком горизонтальных котлов является также то, что около них труднее поддерживать чистоту, чем около вертикальных котлов. Общепринятым мнением можно считать то, что вертикальные котлы пригодны более для производства силовых кабелей, горизонтальные - для производства телефонных кабелей, а шкафы - для сушки телефонных кабелей небольшего диаметра, которые также должны сушиться в корзинах.
Обычная схема сушильно-пропиточного устройства показана на фиг. 213. Здесь А - железный барабан с кабелем; В - вакуум-аппарат; С- вакуум- насос; D - бак с пропиточной массой; Е - поверхностный конденсатор для паров воды, отсасываемых из кабеля.
В производственных условиях контроль засушкой кабеля заключается в наблюдении за смотровым окошечком конденсатора, в которое видно, идет конденсация отсасываемого пара или нет.


Фиг. 213. Схема сушильно-пропиточного устройства для кабелей, пропитанных вязкой массой.
Спускной кран у конденсатора также дает возможность следить за спуском конденсационной воды и примерно судить о стадии процесса,однако оба эти способа очень примитивны и не дают возможности точного определения процесса. В настоящее время для установления типового режима сушки и пропитки существует несколько методов, основанных на измерении электрических характеристик кабеля во время сушки и пропитки. Впервые сообщение о применении такого метода было сделано W. A. Del Маг’ом в 1924 г. Согласно этому сообщению на американских кабельных заводах применялось измерение во время сушки и пропитки электрической емкости кабеля с помощью переменного тока. Постоянный ток не применялся, так как при нем результаты измерений очень сильно колеблются из-за неизбежных колебаний температуры и вследствие значительной электрической абсорбции.


Фиг. 214. Изменение емкости кабеля во время сушки и пропитки по W. A. Del Маг’у
Характер изменения емкости с течением времени по W. A. Del Маг’у изображен на фиг. 214. Как видно из этой фигуры, в начале процесса емкость очень сильно растет, очевидно, отчасти в связи с повышением температуры кабеля, а отчасти в связи с отпотеванием кабеля. Затем емкость начинает падать, и начиная с некоторого времени, становится постоянной. Тот момент, когда емкость стала постоянной, соответствует,
очевидно, концу процесса сушки. При впуске массы в котел, т. е. при начале пропитки, емкость кабеля сначала очень быстро возрастает, затем возрастание замедляется, и наконец, емкость становится постоянной, что соответствует концу пропитки. Нужно заметить, что на фиг. 214 масштаб для величины емкости при пропитке взят в несколько раз меньше, чем для сушки.

Фиг. 215. Изменение емкости кабеля во время пропитки по P. Junius’y.
Из нескольких последующих сообщений о развитии методов контроля сушки и пропитки путем электрических изменений заслуживают упоминания работы P. Junius’a , , произведенные на германском кабельном заводе Hackethal Draht u. Kabelwerke. Junius снимал кривые зависимости емкости от времени мостиком К. W. Wagner’a переменным током тональной частоты. Наиболее любопытны его наблюдения над процессом пропитки. Он в особенности ясно показал влияние толчков давлением на степень пропитки. На фиг. 215 показана по Junius’y зависимость электрической емкости от времени пропитки, причем видно, что при пропитке под вакуумом емкость относительно медленно растет, что указывает на постепенное увеличение степени пропитки. При даче в вакуум-аппарат давления путем впуска атмосферного воздуха емкость сразу делает скачок кверху, что указывает на сжатие воздушных пузырей в кабеле.
При даче вновь вакуума величина емкости опять падает, но не до прежней величины. Повторные толчки давления дают вновь повышение емкости до некоторой постоянной предельной величины. Степень разрыва между предельной величиной емкости и емкостью при вакууме указывает на степень эвакуации кабеля.
Следует, однако, указать, что приводимая P. Junius’ом кривая ионизации для того кабеля, для которого снималась кривая фиг. 215, не имела точки перегиба.
Такой способ исследования сушки и пропитки дает критерий, с помощью которого P. Junius делает оценку некоторым искусственным методам, применяемым при процессе пропитки кабеля. Некоторые заводы стараются поднять концы пропитываемого кабеля так высоко, чтобы они во время пропитки выходили из пропиточной массы. Этим стараются воспрепятствовать проникновению массы с концов кабеля, ибо тогда по отрезанному концу можно судить о степени пропитки кабеля. Такой вывод концов P. Junius считает вредным, ибо при открытии котла пропиточная масса под действием наружного давления впрессовывается в кабель, а при концах кабеля, выходящих из массы, при этом же давлении в кабель через концы будет впрессовываться воздух.
Другой искусственный способ заключается в том, что во время пропитки через некоторые промежутки времени в котел дается давление, чтобы масса совершеннее проникала в бумажные слои. P. Junius не считает этот метод имеющим большие преимущества, поскольку масса при прекращении давления выгоняется из слоя бумаги давлением спрессованных в кабельной изоляции воздушных пузырей. P. Junius предлагает следующий способ рациональной пропитки:
На находящийся в пропиточном котле кабель (без свинцовой оболочки) одевается на один конец муфточка с плотной пригонкой для возможности создания внутри кабеля вакуума; эта муфточка ставится в соединение с особой мощной вакуумной установкой. При закрытом котле кабель эвакуируется как через муфточку, так и через котел.


Фиг. 216. Схема пропитки маслом наполненного кабеля по Е. F. Nuezel’io.
Электрические испытания - очень длительная процедура, которая может быть применена только к типовым испытаниям. В настоящее время существуют способы контроля степени сушки кабеля, путем пропускания отсасываемого из котла воздуха и пара через индикаторы, указывающие химическим путем на присутствие или отсутствие водяного пара.


Фиг. 217. Схема пропитки маслом наполненного кабеля на заводе "Севкабель".

Остановим с я еще на особенностях сушки и пропитки маслом наполненных кабелей. Как было уже упомянуто выше, эти кабели сушатся (или вернее досушиваются) после наложения свинцовой оболочки, поэтому оборудование для сушки этих кабелей значительно отличается от обычного. На фиг. 216 дана схема соединения приборов для пропитки маслом наполненного кабеля, данная Е. F. Nuezel’eM }