Как собрать водородный генератор. Водородный генератор своими руками чертежи

Многие владельцы машин ищут способы экономии топлива. Кардинально решить этот вопрос позволит водородный генератор для автомобиля. Отзывы тех, кто установил себе это устройство, позволяют говорить о существенном снижении затрат при эксплуатации транспорта. Так что тема достаточно интересная. Ниже пойдёт речь о том, как сделать водородный генератор собственными силами.

ДВС на водородном топливе

На протяжении нескольких десятилетий идут поиски возможности приспособить двигатели внутреннего сгорания для полной или гибридной работы на водородном топливе. В Великобритании ещё в 1841 году был запатентован двигатель, работающий на воздушно-водородной смеси. Концерн «Цеппелин» в начале ХХ века в качестве движущей установки своих знаменитых дирижаблей использовал двигатели внутреннего сгорания, работающие на водороде.

Развитию водородной энергетики способствовал и мировой энергетический кризис, разразившийся в 70 годах прошлого века. Однако с его окончанием водородные генераторы быстро были забыты. И это несмотря на массу преимуществ по сравнению с обычным топливом:

  • идеальная воспламеняемость топливной смеси на основе воздуха и водорода, что даёт возможность лёгкого пуска двигателя при любой температуре окружающей среды;
  • большое выделение тепла при сгорании газа;
  • абсолютная экологическая безопасность - отработавшие газы превращаются в воду;
  • выше в 4 раза скорость сгорания по сравнению с бензиновой смесью;
  • способность смеси работать без детонации при высокой степени сжатия.

Основной технической причиной, являющейся непреодолимой преградой в использовании водорода в качестве топлива автомобилей стала невозможность уместить достаточное количество газа на транспортном средстве. Размер топливного бака для водорода будет сравним с параметрами самого автомобиля. Большая взрывоопасность газа должна исключать возможность малейшей утечки. В жидком виде необходима криогенная установка. Этот способ также мало осуществим на автомобиле.

Газ Брауна

Сегодня водородные генераторы у автолюбителей приобретают популярность. Однако это не совсем то, о чем шла речь выше. Путём электролиза вода превращается в так называемый газ Брауна, который и добавляют к топливной смеси. Основная задача, которую решает этот газ, - полное сгорание топлива. Это и служит увеличением мощности и снижением расхода топлива на приличный процент. Некоторым механикам удалось добиться экономии на 40 %.

Решающее значение в количественном выходе газа имеет площадь поверхности электродов. Под действием электрического тока молекула воды начинает разлагаться на два атома водорода и один кислорода. Такая газовая смесь при сгорании выделяет почти в 4 раза больше энергии, чем при сгорании молекулярного водорода. Поэтому использование этого газа в двигателях внутреннего сгорания приводит к более эффективному сгоранию топливной смеси, уменьшает количество вредных выбросов в атмосферу, увеличивает мощность и уменьшает величину затраченного топлива.

Универсальная схема водородного генератора

Тем, у кого нет способностей к конструированию, водородный генератор для автомобиля можно купить у народных умельцев, поставивших на поток сборку и установку таких систем. Сегодня есть множество таких предложений. Стоимость агрегата и установки составляет порядка 40 тысяч рублей.

Но можно собрать такую систему и самостоятельно - сложного в ней нет ничего. Состоит она из нескольких простых элементов, соединённых в одно целое:

  1. Установки для электролиза воды.
  2. Накопительного резервуара.
  3. Улавливателя влаги из газа.
  4. Электронного блока управления (модулятора тока).

Ниже приведена схема, по которой можно легко собрать водородный генератор своими руками. Чертежи главной установки, производящей газ Брауна, достаточно просты и понятны.

Схема не представляет какой-либо инженерной сложности, повторить её может каждый, кто умеет работать с инструментом. Для автомобилей с инжекторной системой подачи топлива необходимо еще установить контроллер, регулирующий уровень подачи газа в топливную смесь и связанный с бортовым компьютером автомобиля.

Реактор

От площади электродов и их материала зависит количество получаемого объёма газа Брауна. Если в качестве электродов брать медные или железные пластины, то реактор не сможет работать продолжительное время по причине быстрого разрушения пластин.

Идеальным выглядит применение титановых листов. Однако их использование повышает затраты на сборку агрегата в несколько раз. Оптимальным считается применение пластин из высоколегированной нержавеющей стали. Металл этот доступен, его не составит труда приобрести. Также можно использовать отработавший своё бак от стиральной машины. Сложность составит только вырезание пластин нужного размера.

Типы установок

На сегодняшний день водородный генератор для автомобиля может быть укомплектован тремя различными по типу, характеру работы и производительности электролизёрами:


Первый тип конструкции вполне достаточен для множества карбюраторных двигателей. Отсутствует необходимость в установке сложной электронной схемы регулятора производительности газа, да и сама сборка такого электролизёра не представляет сложности.

Для более мощных автомобилей предпочтительна сборка второго типа реактора. А для двигателей, работающих на дизельном топливе, и большегрузных машин используют третий тип реактора.

Необходимая производительность

Для того чтобы можно было действительно экономить топливо, водородный генератор для автомобиля должен ежеминутно вырабатывать газ из расчёта 1 литр на 1000 рабочего объёма двигателя. Исходя из этих требований подбирается количество пластин для реактора.

Для увеличения поверхности электродов необходимо провести обработку поверхности наждачной бумагой в перпендикулярном направлении. Такая обработка крайне важна - она увеличит рабочую площадь и позволит избежать «прилипания» пузырьков газа к поверхности.

Последнее приводит к изоляции электрода от жидкости и препятствует нормальному электролизу. Не стоит также забывать, что для нормальной работы электролизёра вода должна быть щелочной. Катализатором может служить обычная сода.

Регулятор тока

Водородный генератор на авто в процессе работы увеличивает свою производительность. Это связано с выделением тепла при реакции электролиза. Рабочая жидкость реактора испытывает нагрев, и процесс протекает гораздо интенсивнее. Для контроля над течением реакции используют регулятор тока.

Если не понижать его, может произойти просто закипание воды, и реактор перестанет выдавать газ Брауна. Специальный контролер, регулирующий работу реактора, позволяет изменять производительность с увеличением оборотов.

Карбюраторные модели оборудуют контроллером с обычным переключателем двух режимов работы: "Трасса" и "Город".

Безопасность установки

Многие умельцы размещают пластины в пластиковых ёмкостях. Не стоит экономить на этом. Нужен бак из нержавеющего металла. Если его нет, можно использовать конструкцию с пластинами открытого типа. В последнем случае необходимо применять качественный изолятор тока и воды для надёжной работы реактора.

Известно, что температура горения водорода составляет 2800. Это самый взрывоопасный газ в природе. Газ Брауна - не что иное, как «гремучая» смесь водорода. Поэтому водородные генераторы на автомобильном транспорте требуют качественной сборки всех узлов системы и наличия датчиков для слежения за течением процесса.

Датчик температуры рабочей жидкости, давления и амперметр не будут лишними в конструкции установки. Особое внимание стоит уделить гидрозатвору на выходе из реактора. Он жизненно необходим. Если произойдёт воспламенение смеси, такой клапан предотвратит распространение пламени в реактор.

Водородный генератор для отопления жилых и производственных помещений, работающий на тех же принципах, отличается в несколько раз большей производительностью реактора. В таких установках отсутствие гидрозатвора представляет смертельную опасность. Водородные генераторы на автомобилях в целях обеспечения безопасной и надёжной работы системы также рекомендуется оборудовать таким обратным клапаном.

Пока без обычного топлива не обойтись

В мире есть несколько экспериментальных моделей, которые полностью работают на газе Брауна. Однако технические решения пока ещё не достигли своего совершенства. Простым жителям планеты такие системы недоступны. Поэтому пока автолюбителям остаётся довольствоваться «кустарными» разработками, которые дают возможность сократить затраты на топливо.

Немного о доверчивости и наивности

Некоторые предприимчивые дельцы предлагают на продажу водородный генератор на авто. Рассказывают про обработку лазером поверхности электродов или про уникальные секретные сплавы, из которых они сделаны, специальные катализаторы воды, разработанные в научных лабораториях мира.

Всё зависит от способности мысли таких предпринимателей к полёту научной фантазии. Доверчивость может сделать вас за ваши же средства (иногда даже не малые) владельцем установки, у которой через два месяца эксплуатации разрушатся контактные пластины.

Если уж вы решили таким способом экономить, то лучше собирать установку самостоятельно. По крайней мере, не на кого потом будет пенять.

Водород практически идеальный вид топлива, но проблема заключается в том, что он на нашей планете встречается только в виде соединений с другими химическими элементами. Доля «чистого» вещества в атмосфере составляет не более 0,00005%. Учитывая такие реалии, становится актуальным вопрос о водородном генераторе. Рассмотрим принцип работы такого устройства, его конструктивные особенности, сферу применения и возможность самостоятельного изготовления.

Описание и принцип работы водородного генератора

Есть несколько методик выделения водорода и из других веществ, перечислим наиболее распространенные:

  1. Электролиз, данная методика наиболее простая и может быть реализована в домашних условиях. Через водный раствор, содержащий соль, пропускается постоянный электрический ток, под его воздействием происходит реакция, которую можно описать следующим уравнением: 2NaCl + 2H 2 O→2NaOH + Cl 2 + H 2 . В данном случае пример приведен для раствора обычной кухонной соли, что не лучший вариант, поскольку выделяющийся хлор является ядовитым веществом. Заметим, что полученный данным способом водород наиболее чистый (порядка 99,9%).
  2. Путем пропускания водяного пара над каменноугольным коксом, нагретым до температуры 1000°С, при таких условиях протекает следующая реакция: Н 2 О + С ⇔ СО + H 2 .
  3. Добыча из метана путем конверсии с водяным паром (необходимое условие для реакции – температура 1000°С): СН 4 + Н 2 О ⇔ СО + 3Н 2 . Второй вариант – окисление метана: 2СН 4 + О 2 ⇔ 2СО + 4Н 2 .
  4. В процессе крекинга (переработки нефти) водород выделяется в качестве побочного продукта. Заметим, что в нашей стране все еще практикуется сжигание этого вещества на некоторых нефтеперерабатывающих заводах ввиду отсутствия необходимого оборудования или достаточного спроса.

Из перечисленных вариантов последний наименее затратный, а первый наиболее доступный, именно он положен в основу большинства генераторов водорода, в том числе и бытовых. Их принцип действия заключается в том, что в процессе пропускания тока через раствор, положительный электрод притягивает отрицательные ионы, а электрод с противоположным зарядом – положительные, в результате происходит расщепление вещества.

Конструктивные особенности и устройство генератора водорода

Если с получением водорода проблем сейчас практически нет, то его транспортировка и хранение до сих пор остается актуальной задачей. Молекулы этого вещества настолько малы, что могут проникать даже сквозь металл, что несет определенную угрозу безопасности. Хранение в абсорбированном виде пока не отличается высокой рентабельностью. Поэтому наиболее оптимальный вариант – генерация водорода непосредственно перед его использованием в производственном цикле.

Для этой цели изготавливаются промышленные установки для генерации водорода. Как правило, это электролизеры мембранного типа. Упрощенная конструкция такого устройства и принцип работы приведен ниже.


Обозначения:

  • А – трубка для отвода хлора (Cl 2).
  • B – отвод водорода (Н 2).
  • С – анод, на котором происходит следующая реакция: 2CL – →CL 2 + 2е – .
  • D – катод, реакцию на нем можно описать следующим уравнением: 2Н 2 О + 2е – →Н 2 + ОН – .
  • Е – раствор воды и хлористого натрия (Н 2 О & NaCl).
  • F – мембрана;
  • G – насыщенный раствор хлористого натрия и образование каустической соды (NaОН).
  • H – отвод рассола и разбавленной каустической соды.
  • I – ввод насыщенного рассола.
  • J – крышка.

Конструкция бытовых генераторов значительно проще, поскольку в большинстве своем они не вырабатывают чистый водород, а производят газ Брауна. Так принято называть смесь кислорода и водорода. Этот вариант наиболее практичен, не требуется разделять водород и кислород, то можно значительно упростить конструкцию, а значит и сделать ее дешевле. Помимо этого полученный газ сжигается по мере его выработки. Хранить и накапливать его в домашних условиях не только проблематично, но и небезопасно.


Обозначения:

  • а – трубка для отвода газа Брауна;
  • b – впускной коллектор подачи воды;
  • с – герметичный корпус;
  • d – блок пластин электродов (анодов и катодов), с установленными между ними изоляторами;
  • e – вода;
  • f – датчик уровня воды (подключается к блоку управления);
  • g – фильтр водоотделения;
  • h – подвод питания, подаваемого на электроды;
  • i – датчик давления (подает сигнал блоку управления при достижении порогового уровня);
  • j – предохранительный клапан;
  • k – отвод газа с предохранительного клапана.

Характерная особенность таких устройств – использование блоков электродов, поскольку не требуется сепарирование водорода и кислорода. Это позволяет сделать генераторы довольно компактными.


Сферы применения водородного генератора

Ввиду проблем, связанных с транспортировкой и хранением водорода, такие устройства востребованы в производствах, где наличие этого газа требует технологический цикл. Перечислим основные направления:

  1. Производства, связанные с синтезом хлороводорода.
  2. Изготовление топлива для ракетных двигателей.
  3. Создание удобрений.
  4. Производство нитрида водорода (аммиака).
  5. Синтез азотной кислоты.
  6. В пищевой промышленности (для получения твердых жиров из растительных масел).
  7. Обработка металла (сварка и резка).
  8. Восстановление металлов.
  9. Синтез метилового спирта
  10. Изготовление соляной кислоты.

Несмотря на то, что производство водорода в процессе переработки нефти дешевле, чем его получение путем электролиза, как уже указывалось выше, возникают сложности с транспортировкой газа. Строить опасные химические производства, непосредственно, рядом с перерабатывающими нефть заводами не всегда позволяет экологическая обстановка. Помимо этого водород, полученный путем электролиза, значительно чище, чем при крекинге нефти. В связи с этим на промышленные водородные генераторы всегда высокий спрос.

Бытовое применение

В быту также есть применение водороду. В первую очередь это автономные отопительные системы. Но здесь некоторые особенности. Установки по производству чистого водорода стоят значительно дороже, чем генераторы газа Брауна, последние даже можно собрать самостоятельно. Но при организации отопления дома необходимо учитывать, что температура горения газа Брауна значительно выше, чем у метана, поэтому потребуется специальный котел, который несколько дороже обычного.


В интернете можно встретить немало статей, в которых написано, что для гремучего газа можно использовать обычные котлы, это делать категорически нельзя. В лучшем случае они быстро выйдут из строя, а в худшем могут стать причиной печальных или даже трагических последствий. Для смеси Брауна предусмотрены специальные конструкции с более термостойким соплом.

Необходимо заметить, что рентабельность отопительных систем на основе водородных генераторов вызывает большое сомнение ввиду низкого КПД. В таких системах имеются двойные потери, во-первых, в процессе генерации газа, во-вторых, при нагреве воды в котле. Дешевле для отопления сразу нагревать воду в электрическом бойлере.

Не менее спорная реализация для бытового использования, при которой газом Брауна обогащают бензин в топливной системе двигателя автомобиля с целью экономии.


Обозначения:

  • а – генератор ННО (принятое обозначение для газа Брауна);
  • b – отвод газа в камеру сушки;
  • с – отсек для удаления водяных паров;
  • d – возвращение конденсата в генератор;
  • е – подача осушенного газа в воздушный фильтр топливной системы;
  • f – автомобильный двигатель;
  • g – подключение к аккумулятору и электрогенератору.

Нужно заметить, что в некоторых случаях такая система даже работает (если ее собрать правильно). Но точные параметры, коэффициент прироста мощности, процент экономии вы не найдете. Эти данные сильно размыты, и достоверность их вызывает сомнения. Опять же не ясен вопрос, насколько уменьшится ресурс двигателя.

Но спрос порождает предложения, в интернетах можно найти подробные чертежи таких приспособлений и инструкцию по их подключению. Есть и готовые модели, сделанные в стране Восходящего Солнца.

Делаем простейший генератор водорода своими руками пошагово

Расскажем, как можно сделать самодельный генератор для получения смеси водорода и кислорода (ННО). Его мощности на отопления дома не хватит, но для газовой горелки для резки металла количество полученного газа будет достаточным.


Рис. 8. Схема газовой горелки

Обозначения:

  • а – сопло горелки;
  • b – трубки;
  • c – водные затворы;
  • d – вода;
  • е – электроды;
  • f – герметичный корпус.

В первую очередь делаем электролизер, для этого нам понадобится герметичная емкость и электроды. В качестве последних используем стальные пластины (их размер выбираем произвольно, в зависимости от желаемой производительности), прикрепленные к диэлектрическому основанию. Соединяем между собой все пластины каждого из электродов.

Когда электроды готовы их надо укрепить в емкости таким образом, чтобы места подключения проводов питания были выше предполагаемого уровня воды. Провода от электродов идут к блоку питания на 12 вольт или автомобильному аккумулятору.

В крышке емкости делаем отверстие под трубку для выхода газа. В качестве водных затворов можно использовать обычные стеклянные банки емкостью 1 литр. Заполняем их на 2/3 водой и подключаем к электролизеру и горелке, как показано на рисунке 8.

Горелку лучше взять готовую, поскольку не каждый материал может выдержать температуру горения газа Брауна. Подключаем ее к выходу последнего водного затвора.

Наполняем электролизер водой, в которую добавлена обычная кухонная соль.

Подаем напряжение на электроды и проверяем работу устройства.

Мысль о том, что водоемы планеты буквально переполнены самым безупречным с точки зрения экологии топливом – водородом, — давно бередит умы ученых.

За все время было предложено немало решений, позволяющих получать этот газ в чистом виде.

Как выяснилось, добывать горючее из воды может каждый из нас при помощи простого процесса, называемого электролизом. Далее мы узнаем, как сделать водородный генератор своими руками для отопления.

Чистый водород выделяется в ходе разнообразных химических реакций, но такой способ его добычи является довольно сложным, а зачастую и слишком дорогим.

Исключение составляют технологические процессы, при которых газ образуется как побочный продукт, но такое его производство имеет пока мизерные объемы.

Гораздо проще выделять водород из воды, пропуская через нее электрический ток – этот процесс и называют электролизом. Сначала молекула Н2О распадается на атом водорода Н и гидроксогруппу ОН, затем происходит окончательное разделение кислорода и водорода.

Первый, имея отрицательный заряд, устремляется к аноду, второй – к катоду. Элементы накапливаются в виде пузырьков, которые, достигнув определенного размера, отрываются от электрода и всплывают. Далее кислород и водород без всякого разделения (эта смесь получила название «газа Брауна») поступают в горелку, где в процессе сжигания снова превращаются в воду. Чтобы подача готового продукта происходила без затруднений, водородные генераторы часто оборудуют воздушным дренажом.

Очевидно, что производительность установки будет возрастать с увеличением площади контакта между водой и электродами. По этой причине последние выполняют в виде пластин. Они собираются в конструкции, напоминающие стальные ребристые радиаторы отопления.

С целью увеличения производительности сегодня применяют цилиндрические электроды, а также имеющие более сложную форму.

Скорость выделения водорода зависит и от материала электродов.

Вместо меди или нержавеющей стали в современных «продвинутых» генераторах применяют особые сплавы, которые стоят достаточно дорого.

Еще одно условие – вода должна пропускать ток. Отметим, что в дистиллированном виде она является диэлектриком. Проводником электричества эту жидкость делают ионы, на которые распадаются растворенные в ней вещества, в первую очередь соли. Чем более крутым является раствор, тем лучше он будет пропускать ток.

С увеличением размеров электрода уменьшается мощность выделения тепла при пропускании через него электрического тока. Это очень важный момент, поскольку при нагреве свыше 65 градусов пластины интенсивно покрываются налетом, который придется постоянно счищать.

Преимущества использования

Главное достоинство водорода как топлива состоит в его абсолютной безвредности: при сгорании этого вещества образуется чистый водяной пар.

Ни один другой вид топлива не может похвастаться этим качеством.

Даже природный газ при сжигании образует углекислоту, которая, как принято сегодня считать, приводит к возникновению парникового эффекта.

Второе преимущество – доступность. Водород является самым распространенным веществом во Вселенной, а добывать его можно прямо из воды, запасы которой на нашей планете можно считать неисчерпаемыми. Правда, как мы увидим далее, доступность эта пока только кажущаяся.

Важным достоинством является и то, что для перехода на водородное топливо газовый котел, как и двигатель внутреннего сгорания, почти не нужно переделывать.

Негативные стороны водородного типа обогрева зданий

В дискуссиях на тему целесообразности применения водородного топлива для систем отопления скептики приводят весомые аргументы:

  1. Высокая стоимость: даже в самых эффективных электролизных установках, созданных на сегодняшний день, для получения водорода приходится тратить в 2 раза больше энергии, чем дает последующее его сжигание.
  2. Взрывоопасность: в способности водорода легко взрываться люди убедились во время крушения дирижабля «Гинденбург», баллон которого был заполнен именно этим газом.
  3. Сложность подготовительного процесса: получить водород из воды – это полдела. Для эффективного использования в теплогенераторах он должен подаваться при стабильном давлении, для чего понадобятся компрессор и дополнительный резервуар с редуктором. Кроме того, нужно будет избавиться от водяного пара, что потребует применения осушителя.
Таким образом, установка для получения водорода превращается в целый комбинат, который далеко не каждый домовладелец сможет приобрести и разместить у себя.

Создание водородного генератора своими руками

Установку для выделения водорода из воды достаточно просто изготовить самостоятельно. По своим характеристикам она не будет сильно уступать покупной, зато обойдется гораздо дешевле. Рассмотрим последовательно этапы создания.

Проект (чертеж)

Для изготовления генератора понадобится герметично закрывающаяся емкость, которая перед началом производства водорода будет заполняться водой.

Расположенные внутри электроды будут иметь вид набора пластин (понадобится 16 штук), установленных с зазором в 1 мм.

Чтобы его обеспечить, между пластинами нужно поместить нейлоновые прокладки (допускается любой другой диэлектрик).

Расстояние в 1 мм является оптимальным: если его увеличить – придется наращивать силу тока; при уменьшении зазора будет затруднен выход газовых пузырьков. Пластины будут поочередно соединяться с анодом и катодом 12-вольтного источника питания. При этом их необходимо надеть на ось, также изготовленную из диэлектрического материала.

Когда электроды будут закреплены на держателе, его необходимо будет прикрепить к крышке корпуса снизу.

Для отбора газовой смеси в крышку корпуса врезается трубка от обычной капельницы. Кроме того, в ней необходимо просверлить еще два отверстия, через которые будут пропущены провода. После сборки установки все отверстия в крышке нужно будет загерметизировать с помощью силиконового герметика или клея.

Важным компонентом генератора является гидрозатвор. Для его изготовления понадобится небольшая емкость (подойдет обычная бутылка), куда перед применением устройства необходимо будет налить воду. В герметично закрывающейся крышке нужно просверлить два отверстия: в одно пропускаем трубку от генератора (ее необходимо опустить до самого дна), а во второе – еще одну трубку, по которой газовая смесь будет поступать к горелке. Отверстия в крышке гидрозатвора также должны быть герметизированы. Воду в бутылку следует наливать на ¾ ее объема.

Чтобы вода, залитая в корпус генератора, имела лучшую проводимость, в нее нужно добавить пару столовых ложек поваренной соли или каустической соды (гидроксид натрия).

Подбор электродов

Материал, из которого будут изготовлены электроды, должен обладать малым электрическим сопротивлением и быть химически инертным по отношению к кислороду и имеющимся в растворе веществам.

При несоблюдении второго требования будет иметь место химическая реакция с участием подключенных к катодному полюсу электродов, вследствие которой раствор станет насыщаться посторонними веществами.

Именно поэтому медь – один из лучших проводников – в водном растворе применять нельзя. Вместо нее рекомендуется использовать нержавеющую сталь. Оптимальная толщина для пластин-электродов из этого материала – 2 мм.

Контейнер

С учетом опасности взрыва корпус генератора следует изготавливать из прочного и пластичного материала, устойчивого к высоким температурам. Лучше всего этим требованиям соответствует сталь. Необходимо только полностью исключить контакт проводов или электродов с корпусом, следствием которого будет короткое замыкание.

В жилых и хозяйственных объектах широко применяются трубы из поливинилхлорида при организации водоснабжения. : преимущества, недостатки, особенности монтажа и технические характеристики.

С характеристиками септика Славаква вы можете ознакомиться .

Металлопластиковые трубы отличаются не только своими положительными характеристиками при эксплуатации, они к тому же легко поддаются монтажу. Здесь вы найдете полезную информацию по монтажу труб своими руками.

Водородный генератор для автомобиля своими руками (чертежи)

Обогащение топливно-воздушной смеси водородом способствует снижению расхода горючего. По свидетельству некоторых автолюбителей, экономия топлива может составить до 30%.

За основу автомобильного генератора водорода принято устройство, которое было описано в предыдущем разделе. Разница состоит в отсутствии гидрозатвора (полученный водород сразу направляется во впускной коллектор) и наличии блока управления. Последний будет регулировать силу тока между электродами в зависимости от числа оборотов двигателя.

Самостоятельное изготовление такого блока под силу только тем, кто свободно ориентируется в радиоэлектронике, поэтому мы рекомендуем воспользоваться покупным вариантом. Тем более что блоки заводского изготовления всю работу по регулированию производительности водородного генератора берут на себя, не требуя участия пользователя.

Элементы системы для автомобильного генератора

Все что будет нужно – в самый первый раз вручную подобрать значение силы тока (оптимальное) для режимов «холостой ход» и «максимальная нагрузка», а далее блок управления будет сам варьировать производительность установки в заданных пределах.

Необходимо очень тщательно уплотнять все соединения: утечка водорода может привести к пожару.

Герметичность конструкции лучше всего проверять мыльной пеной: утечки, если таковые имеются, проявят себя постоянно появляющимися и растущими пузырями.

Корпус автомобильного генератора водорода можно изготовить из водопроводного фильтра, который является достаточно прочным. Объем его невелик и чтобы установку не приходилось слишком часто заправлять, ее можно дополнительно оборудовать баком для хранения запаса раствора. К рабочей емкости он присоединяется двумя трубками.

Видео на тему


Электролиз широко используется в производственной сфере, например, для получения алюминия (аппараты с обожженными анодами РА-300, РА-400, РА-550 и т.д.) или хлора (промышленные установки Asahi Kasei). В быту этот электрохимический процесс применялся значительно реже, в качестве примера можно привести электролизер для бассейна Intellichlor или плазменный сварочный аппарат Star 7000. Увеличение стоимости топлива, тарифов на газ и отопление в корне поменяли ситуацию, сделав популярной идею электролиза воды в домашних условиях. Рассмотрим, что представляют собой устройства для расщепления воды (электролизеры), и какова их конструкция, а также, как сделать простой аппарат своими руками.

Что такое электролизер, его характеристики и применение

Так называют устройство для одноименного электрохимического процесса, которому требуется внешний источник питания. Конструктивно это аппарат представляет собой заполненную электролитом ванну, в которую помещены два или более электродов.

Основная характеристика подобных устройств – производительность, часто это параметр указывается в наименовании модели, например, в стационарных электролизных установках СЭУ-10, СЭУ-20, СЭУ-40, МБЭ-125 (мембранные блочные электролизеры) и т.д. В данных случаях цифры указывают на выработку водорода (м 3 /ч).

Что касается остальных характеристик, то они зависят от конкретного типа устройства и сферы применения, например, когда осуществляется электролиз воды, на КПД установки влияют следующие параметры:


Таким образом, подавая на выходы 14 вольт, мы получим 2 вольта на каждой ячейке, при этом на пластинах с каждой стороны будут разные потенциалы. Электролизеры, где используется подобная система подключения пластин, называются сухими.

  1. Расстояние между пластинами (между катодным и анодным пространством), чем оно меньше, тем меньше будет сопротивление и, следовательно, больший ток пройдет через раствор электролита, что приведет к увеличению выработки газа.
  2. Размеры пластины (имеется в виду площадь электродов), прямо пропорциональны току, идущему через электролит, а значит, также оказывают влияние на производительность.
  3. Концентрация электролита и его тепловой баланс.
  4. Характеристики материала, используемого для изготовления электродов (золото – идеальный материал, но слишком дорогой, поэтому в самодельных схемах используется нержавейка).
  5. Применение катализаторов процесса и т.д.

Как уже упоминалось выше, установки данного типа могут использоваться как генератор водорода, для получения хлора, алюминия или других веществ. Они также применяются в качестве устройств, при помощи которых осуществляется очистка и обеззараживание воды (УПЭВ, VGE), а также проводится сравнительный анализ ее качества (Tesp 001).


Нас, прежде всего, интересуют устройства, производящие газ Брауна (водород с кислородом), поскольку именно эта смесь имеет все перспективы для использования в качестве альтернативного энергоносителя или добавок к топливу. Их мы рассмотрим чуть позже, а пока перейдем к конструкции и принципу работы простейшего электролизера, расщепляющего воду на водород и кислород.

Устройство и подробный принцип работы

Аппараты для производства гремучего газа, в целях безопасности, не предполагают его накопление, то есть газовая смесь сжигается сразу после получения. Это несколько упрощает конструкцию. В предыдущем разделе мы рассмотрели основные критерии, влияющие на производительность аппарата и накладывающие определенные требования к исполнению.

Принцип работы устройства демонстрирует рисунок 4, источник постоянного напряжения подключен к погруженным в раствор электролита электродам. В результате через него начинает проходить ток, напряжение которого выше точки разложения молекул воды.

Рисунок 4. Конструкция простого электролизера

В результате этого электрохимического процесса катод выделяет водород, а анод – кислород, в соотношении 2 к 1.

Виды электролизеров

Кратко ознакомимся с конструктивными особенностями основных видов устройств для расщепления воды.

Сухие

Конструкция прибора данного типа была показана на рисунке 2, ее особенность заключается в том, что манипулируя количеством ячеек, можно запитать устройство от источника с напряжением, существенно превышающим минимальный электродный потенциал.

Проточные

С упрощенным устройством приборов этого вида можно ознакомиться на рисунке 5. Как видим, конструкция включает в себя ванну с электродами «A», полностью залитую раствором и бак «D».


Рис 5. Конструкция проточного электролизера

Принцип работы устройства следующий:

  • входе электрохимического процесса газ вместе с электролитом выдавливается в емкость «D» через трубу «В»;
  • в баке «D» происходит отделение от электролитного раствора газа, который выводится через выходной клапан «С»;
  • электролит возвращается в гидролизную ванну через трубу «Е».

Мембранные

Основная особенность устройств этого типа – использование твердого электролита (мембраны) на полимерной основе. С конструкцией приборов этого вида можно ознакомиться на рисунке 6.

Рис 6. Электролизер мембранного типа

Основная особенность таких устройств заключается в двойном назначении мембраны, она не только переносит протоны и ионы, а и на физическом уровне разделяет как электроды, так и продукты электрохимического процесса.

Диафрагменные

В тех случаях, когда не допустима диффузия продуктов электролиза между электродными камерами, используют пористую диафрагму (что и дало название таким приборам). Материалом для нее может служить керамика, асбест или стекло. В некоторых случаях для создания такой диафрагмы можно использовать полимерные волокна или стеклянную вату. На рисунке 7 показан простейший вариант диафрагменного прибора для электрохимических процессов.


Пояснение:

  1. Выход для кислорода.
  2. U-образная колба.
  3. Выход для водорода.
  4. Анод.
  5. Катод.
  6. Диафрагма.

Щелочные

Электрохимический процесс невозможен в дистиллированной воде, в качестве катализатора применяется концентрированный раствор щелочи (использование соли нежелательно, так как при этом выделяется хлор). Исходя из этого, щелочными можно назвать большую часть электрохимических устройств для расщепления воды.

На тематических форумах советуют использовать гидроксид натрия (NaOH), который, в отличие от пищевой соды (NaHCO 3), не разъедает электрод. Заметим, что у последней имеются два весомых преимущества:

  1. Можно использовать железные электроды.
  2. Не выделяются вредные вещества.

Но, один существенный недостаток сводит на нет все преимущества пищевой соды, как катализатора. Ее концентрация в воде не более 80 грамм на литр. Это снижает морозостойкость электролита и его проводимость тока. Если с первым еще можно смириться в теплое время года, то второе требует увеличения площади пластин электродов, что в свою очередь, увеличивает размер конструкции.

Электролизер для получения водорода: чертежи, схема

Рассмотрим, как можно сделать мощную газовую горелку, работающую от смеси водорода с кислородом. Схему такого устройства можно посмотреть на рисунке 8.


Рис. 8. Устройство водородной горелки

Пояснение:

  1. Сопло горелки.
  2. Резиновые трубки.
  3. Второй водяной затвор.
  4. Первый водяной затвор.
  5. Анод.
  6. Катод.
  7. Электроды.
  8. Ванна электролизера.

На рисунке 9 представлена принципиальная схема блока питания для электролизера нашей горелки.


Рис. 9. Блок питания электролизной горелки

На мощный выпрямитель нам понадобятся следующие детали:

  • Транзисторы: VT1 – МП26Б; VT2 – П308.
  • Тиристоры: VS1 – КУ202Н.
  • Диоды: VD1-VD4 – Д232; VD5 – Д226Б; VD6, VD7 – Д814Б.
  • Конденсаторы: 0,5 мкФ.
  • Переменные резисторы: R3 -22 кОм.
  • Резисторы: R1 – 30 кОм; R2 – 15 кОм; R4 – 800 Ом; R5 – 2,7 кОм; R6 – 3 кОм; R7 – 10 кОм.
  • PA1 – амперметр со шкалой измерения не менее 20 А.

Краткая инструкция по деталям к электролизеру.

Ванну можно сделать из старого аккумулятора. Пластины следует нарезать 150х150 мм из кровельного железа (толщина листа 0,5 мм). Для работы с вышеописанным блоком питания потребуется собрать электролизер на 81 ячейку. Чертеж, по которому выполняется монтаж, приведен на рисунке 10.

Рис. 10. Чертеж электролизера для водородной горелки

Заметим, что обслуживание такого устройства и управление им не вызывает трудностей.

Электролизер для автомобиля своими руками

В интернете можно найти много схем HHO систем, которые, если верить авторам, позволяют экономить от 30% до 50% топлива. Такие заявления слишком оптимистичны и, как правило, не подтверждаются никакими доказательствами. Упрощенная схема такой системы продемонстрирована на 11 рисунке.


Упрощенная схема электролизера для автомобиля

По идее, такое устройство должно снизить расход топлива за счет его полного выгорания. Для этого в воздушный фильтр топливной системы подается смесь Брауна. Это водород с кислородом, полученные из электролизера, запитанного от внутренней сети автомобиля, что повышает расход топлива. Замкнутый круг.

Безусловно, может быть задействована схема шим регулятора силы тока, использован более эффективный импульсный блок питания или другие хитрости, позволяющие снизить расход энергии. Иногда в интернете попадаются предложения приобрести низкоамперный БП для электролизера, что вообще является нонсенсом, поскольку производительность процесса напрямую зависит от силы тока.

Это как система Кузнецова, активатор воды которой утерян, а патент отсутствует и т.д. В приведенных видео, где рассказывают о неоспоримых преимуществах таких систем, практически нет аргументированных доводов. Это не значит, что идея не имеет прав на существование, но заявленная экономия «слегка» преувеличена.

Электролизер своими руками для отопления дома

Делать самодельный электролизер для отопления дома на данный момент не имеет смысла, поскольку стоимость водорода, полученного путем электролиза значительно дороже природного газа или других теплоносителей.

Также следует учитывать, что температуру горения водорода не выдержит никакой металл. Правда имеется решение, которое запатентовал Стен Мартин, позволяющее обойти эту проблему. Необходимо обратить внимание на ключевой момент, позволяющий отличить достойную идею от очевидного бреда. Разница между ними заключается в том, что на первый выдают патент, а второй находит своих сторонников в интернете.

На этом можно было бы и закончить статью о бытовых и промышленных электролизерах, но имеет смысл сделать небольшой обзор компаний, производящих эти устройства.

Обзор производителей электролизеров

Перечислим производителей, выпускающих топливные элементы на базе электролизеров, некоторые компании также выпускают и бытовые устройства: NEL Hydrogen (Норвегия, на рынке с 1927 года), Hydrogenics (Бельгия), Teledyne Inc (США), Уралхиммаш (Россия), РусАл (Россия, существенно усовершенствовали технологию Содерберга), РутТех (Россия).

Содержание

Развитие технологий привело к замене классических дровяных печек на котельные агрегаты. В качестве топлива, помимо дров и угля стали использоваться газ, масло, солярка и даже электричество. В последнее время энергию для автономных отопительных систем дополнительно получают с помощью солнечных батарей и геотермальных установок. Учитывая, что неиссякаемым источником энергии является водород, можно попробовать собрать водородный генератор своими руками для получения экологичного топлива.

Водородный генератор своими руками

Принцип работы устройства

Водородный генератор для отопления считается перспективной разработкой, поскольку получать горючее с высокой теплотворной способностью можно из обычной воды. Главная задача - получить чистый водород максимально простым и дешевым способом.

Получение водорода

Традиционно для этих целей используется метод электролиза. Его суть в следующем: в воду, недалеко друг от друга, помещают металлические пластины, которые подключены к источнику высокого напряжения. Вода проводит электрический ток, поэтому при подаче электроэнергии молекулу воды разрывает на составляющие. Высвобождение из каждой молекулы двух атомов водорода и одного атома кислорода позволяет получить так называемый газ Брауна с формулой ННО.

Теплотворная способность газа Брауна составляет 121 МДж/кг. При горении вещества не образуется вредных веществ, а для того, чтобы его использовать в качестве энергоносителя для отопления дома достаточно немного модернизировать стандартный газовый котел. Однако при создании установки для получения водорода своими руками особое внимание следует уделить мерам безопасности - при соединении водорода с кислородом образуется гремучая смесь.

Конструкция генератора

Электролизер, установка для выработки газа Брауна путем электролиза воды в больших объемах, состоит из нескольких ячеек, в которые вмонтированы металлические пластинчатые электроды. Чем больше суммарная площадь поверхности электродов, тем мощнее установка.

Ячейки находятся в герметичной емкости, которая оснащена патрубком для подключения к источнику воды, патрубком для отвода полученного газа, клеммами для подсоединения электропитания. Также генератор снабжен водяным затвором, предотвращающим контакт водорода с кислородом, и защитным клапаном для предотвращения эффекта обратного пламени - газ сгорает только в горелочном устройстве.


Принцип работы водородного генератора

Водородное отопление

Водородное отопление дома требует использования установки с большой площадью электродов, иначе отопительный котел не сможет эффективно нагревать теплоноситель. Применять обычный электролизер, нарастив его габариты, нерентабельно, поскольку на получение водорода будет тратиться больше электроэнергии, чем ушло бы на работу отопительного электрокотла для обогрева дома такой же площади.

Ведутся разработки более эффективных установок для получения водородного топлива без лишних энергозатрат. Известна история американского изобретателя Стенли Мейера, который создал «водородную ячейку», потребляющую в десятки раз меньше электроэнергии по сравнению с традиционными установками. Однако ученому не удалось совершить переворот в современных технологиях - он скоропостижно скончался от отравления, а чертежи установки исчезли.

Над созданием водородного генератора с попытками реализовать идею Мейера трудятся и в технических лабораториях, и в мастерских домашних умельцев во всем мире. Изобретение американского ученого заключалось в создании резонанса раскачивающейся молекулы воды с электрическими импульсами - в этом случае она расщепляется на атомы без использования высокого электрического напряжения.

Радужные перспективы

Водород - крайне перспективный энергоноситель по целому ряду причин :

  1. Он в наличии во всей Вселенной, на Земле занимает десятое место по степени распространенности - энергоресурс можно назвать неисчерпаемым.
  2. Газ не токсичен, не способен причинить вред живым организмам. Важно лишь предпринимать меры безопасности, чтобы исключить утечку с образованием «гремучей смеси» водорода с кислородом.
  3. Продукт горения водорода - обычный водяной пар.
  4. Энергоноситель отличается высокой теплоемкостью, температура горения составляет 3000°С.
  5. При утечке газа он быстро улетучится, не причинив никакого вреда, поскольку в 14 раз легче воздуха. Но поблизости не должно быть открытого огня или искрящей проводки, иначе гремучая смесь взорвется.
  6. Кубический метр водорода обладает теплотворной способностью 13000 Дж.

Преимущества водородного отопления

Водород как энергоноситель - сфера применения

Водород высоко оценивается как энергоноситель и активно используется, к примеру, в качестве топлива для космических ракет. Используются разные способы его получения в промышленных масштабах. В основном это газификация угля или нефтепродуктов, конверсия метана и его гомологов. Такой дешевый водород нельзя рассматривать как экологичное топливо, поскольку его добыча связана с вредными выбросами в атмосферу. Электролиз воды для получения водорода в больших объемах, применяется только в Норвегии, где имеется избыток дешевой электроэнергии.

Компактный электрический газогенератор нашел применение в сфере газорезки. Оборудование, производящее водород, удобнее в использовании по сравнению с баллонным газом - нет необходимости транспортировать тяжелые баллоны, зависеть от поставок сжиженного газа и т.д. Но в угоду удобству была принесена экономия - для электролитического процесса требуется достаточно много электроэнергии, в итоге стоимость энергоносителя существенно возрастает. При этом разница в стоимости купленного и произведенного водорода во многом компенсируется отсутствием затрат на его доставку.

Водородные отопительные котлы

На многих сайтах, посвященных системам отопления, можно встретить информацию о том, что водород составляет достойную конкуренцию природному газу в качестве энергоносителя для отопительного котла. Упор делается на то, что смонтировав генератор водорода, вы получаете возможность тратить на отопление не больше средств, чем на газовое, при этом не придется оформлять множество документов и платить серьезные суммы за подключение дома к центральной газовой сети.

На основании вышеизложенного в статье можно сделать выводы, что себестоимость водорода низка только при его промышленном производстве. То есть, получение топлива электролизом заведомо обойдется дороже, и ориентироваться на завлекательные цифры стоимости килограмма сжиженного водорода не имеет смысла.

Рассмотрим котельное оборудование, представленное на рынке. Выпуском водородных котлов занимается итальянская компания Giacomini, которая специализируется в сфере альтернативной энергетики. Также аналогичные агрегаты изготавливают некоторые китайские компании, успешно скопировавшие технологию.


Водородный котел на твердом топливе

Разработки компании Giacomini направлены на создание отопительного оборудования, которое было бы полностью безопасно для окружающей среды.

Водородный котел этой компании относится к указанной категории - его работа связана с выделением водяного пара, какие-либо вредные выбросы отсутствуют. В качестве энергоносителя используется водород, при этом его добывают путем электролиза.

Однако стоит обратить особое внимание на принцип действия этого котла. Полученный в системе водород не сжигается, он вступает в реакцию с кислородом в присутствии катализатора. В результате выделяется тепловая энергия, которой достаточно для нагрева отопительного контура до 40°С.

То есть, водородные котлы, которые предлагается приобрести по солидной цене, подходят лишь для использования в качестве теплогенератора для контура водяного пола, плинтусного или потолочного отопления.

Можно сделать вывод, что мировые производители котельного оборудования не нашли приемлемого технического решения, чтобы создать эффективный отопительный котел, способный использовать тепловую энергию сжигаемого водорода. Или рассчитали, что такой вариант нерентабелен.

Изготовление генератора собственными силами

В сети Интернет можно найти немало инструкций, как сделать водородный генератор. Следует отметить, что собрать такую установку для дома своими руками вполне реально - конструкция достаточно проста.


Компоненты водородного генератора своими руками для отопления в частном доме

Но что вы будете делать с полученным водородом? Еще раз обратите внимание на температуру горения этого топлива в воздухе. Она составляет 2800-3000°С. Если учесть, что при помощи горящего водорода режут металлы и другие твердые материалы, становится понятно, что установить горелку в обычный газовый, жидкотопливный или твердотопливный котел с водяной рубашкой не получится - он попросту прогорит.

Умельцы на форумах советуют выложить топку изнутри шамотным кирпичом. Но температура плавления даже лучших материалов данного типа не превышает 1600°С, долго такая топка не выдержит. Второй вариант - использование специальной горелки, которая способна понизить температуру факела до приемлемых величин. Таким образом, пока не найдете такую горелку, не стоит начинать монтировать самодельный водородный генератор.

Решив вопрос с котлом, выберите подходящую схему и инструкцию на тему, как сделать водородный генератор для отопления частного дома.

Самодельное устройство будет эффективным только при условии :

  • достаточной площади поверхности пластинчатых электродов;
  • правильного выбора материала для изготовления электродов;
  • высокого качества жидкости для электролиза.

Какого размера должен быть агрегат, генерирующий водород в достаточных количествах для отопления дома, придется определять «на глазок» (на основании чужого опыта), либо собрав для начала небольшую установку. Второй вариант практичнее - он позволит понять, стоит ли тратить деньги и время на монтаж полноценного генератора.

В качестве электродов в идеале используются редкие металлы, но для домашнего агрегата это слишком дорого. Рекомендуется выбрать пластины из нержавеющей стали, желательно ферромагнитной.


Конструкция водородного генератора

К качеству воды предъявляются определенные требования. Она не должна содержать механические загрязнения и тяжелые металлы. Максимально эффективно генератор работает на дистиллированной воде, но для удешевления конструкции можно ограничиться фильтрами для очистки воды от ненужных примесей. Чтобы электрическая реакция протекала интенсивнее, в воду добавляют гидроксид натрия в соотношении 1 столовая ложка на 10 л воды.

Экономический вопрос

Прежде чем начать подробно разбираться, как сделать водородный генератор, желательно вспомнить школьный курс физики. Все преобразования происходят с потерей энергии, то есть, затраты электроэнергии на получение водорода не окупятся тепловой мощностью при сжигании полученного топлива.

Если учесть, что сжигать водород с максимальной температурой и теплоотдачей в домашних условиях попросту невозможно, становится понятным, что реальные потери будут даже выше тех, что рассчитаны для идеальных условий.

Итак, использовать водородный генератор, сделанный для отопления своими руками, не имеет никакого смысла, если у вас нет доступа к бесплатной электроэнергии. Установить для отопления дома электрический котел и тратить электроэнергию напрямую, без сложных преобразований, обойдется вам в 2-3 раза дешевле. Кроме того, электрокотел полностью безопасен, а эксплуатация кустарной установки грозит взрывом при несоблюдении правил монтажа и эксплуатации.

Очевидно, что получение дешевого водорода экологически чистым способом, к которым относится электролиз, - это вопрос будущего, над которым сегодня работают ученые в передовых странах мира.