Преимущества трехфазной системы тока перед однофазной. Трехфазные цепи. Область применения. Достоинства и недостатки. Схемы включения. Режимы

1. Теоретическая часть

1.1. Трехфазные цепи. Область применения. Достоинства и недостатки. Схемы включения. Режимы …………….................................................................................3

1.2. Трехфазные трансформаторы.……………………………19

1.3. Электрические измерители тока и напряжения тока …………………………………..……………………………26

2. Практическая часть

2.1. Расчет по трансформаторам.………………………………..37

2.2. Расчет по асинхронным двигателям……………………….42

Трехфазные цепи. Область применения. Достоинства и недостатки. Схемы включения. Режимы.

Трехфазная цепь является частным случаем многофазных электрических систем, представляющих собой совокупность электрических цепей, в которых действуют ЭДС одинаковой частоты, сдвинутые по фазе относительно друг друга на определенный угол. Отметим, что обычно эти ЭДС, в первую очередь в силовой энергетике, синусоидальны. Однако, в современных электромеханических системах, где для управления исполнительными двигателями используются преобразователи частоты, система напряжений в общем случае является несинусоидальной. Каждую из частей многофазной системы, характеризующуюся одинаковым током, называют фазой, т.е. фаза – это участок цепи, относящийся к соответствующей обмотке генератора или трансформатора, линии и нагрузке.

Таким образом, понятие «фаза» имеет в электротехнике два различных значения:

· фаза как аргумент синусоидально изменяющейся величины;

· фаза как составная часть многофазной электрической системы.

Разработка многофазных систем была обусловлена исторически. Исследования в данной области были вызваны требованиями развивающегося производства, а успехам в развитии многофазных систем способствовали открытия в физике электрических и магнитных явлений.

Важнейшей предпосылкой разработки многофазных электрических систем явилось открытие явления вращающегося магнитного поля (Г.Феррарис и Н.Тесла, 1888 г.). Первые электрические двигатели были двухфазными, но они имели невысокие рабочие характеристики. Наиболее рациональной и перспективной оказалась трехфазная система, основные преимущества которой будут рассмотрены далее. Большой вклад в разработку трехфазных систем внес выдающийся русский ученый-электротехник М.О.Доливо-Добровольский, создавший трехфазные асинхронные двигатели, трансформаторы, предложивший трех- и четырехпроводные цепи, в связи с чем по праву считающийся основоположником трехфазных систем.

Источником трехфазного напряжения является трехфазный генератор, на статоре которого (см. рис. 1) размещена трехфазная обмотка. Фазы этой обмотки располагаются таким образом, чтобы их магнитные оси были сдвинуты в пространстве друг относительно друга на эл. рад. На рис. 1 каждая фаза статора условно показана в виде одного витка. Начала обмоток принято обозначать заглавными буквами А,В,С, а концы- соответственно прописными x,y,z. ЭДС в неподвижных обмотках статора индуцируются в результате пересечения их витков магнитным полем, создаваемым током обмотки возбуждения вращающегося ротора (на рис. 1 ротор условно изображен в виде постоянного магнита, что используется на практике при относительно небольших мощностях). При вращении ротора с равномерной скоростью в обмотках фаз статора индуцируются периодически изменяющиеся синусоидальные ЭДС одинаковой частоты и амплитуды, но отличающиеся вследствие пространственного сдвига друг от друга по фазе на рад. (см. рис. 2).

Трехфазные системы в настоящее время получили наибольшее распространение. На трехфазном токе работают все крупные электростанции и потребители, что связано с рядом преимуществ трехфазных цепей перед однофазными, важнейшими из которых являются:

Экономичность передачи электроэнергии на большие расстояния;

Самым надежным и экономичным, удовлетворяющим требованиям промышленного электропривода является асинхронный двигатель с короткозамкнутым ротором;

Возможность получения с помощью неподвижных обмоток вращающегося магнитного поля, на чем основана работа синхронного и асинхронного двигателей, а также ряда других электротехнических устройств;

Уравновешенность симметричных трехфазных систем.

Для рассмотрения важнейшего свойства уравновешенности трехфазной системы, которое будет доказано далее, введем понятие симметрии многофазной системы.

Система ЭДС (напряжений, токов и т.д.) называется симметричной, если она состоит из m одинаковых по модулю векторов ЭДС (напряжений, токов и т.д.), сдвинутых по фазе друг относительно друга на одинаковый угол . В частности векторная диаграмма для симметричной системы ЭДС, соответствующей трехфазной системе синусоид на рис. 2, представлена на рис. 3.



Рис.3 Рис.4

Из несимметричных систем наибольший практический интерес представляет двухфазная система с 90-градусным сдвигом фаз (см. рис. 4).Все симметричные трех- и m-фазные (m>3) системы, а также двухфазная система являются уравновешенными. Это означает, что хотя в отдельных фазах мгновенная мощность пульсирует (см. рис. 5,а), изменяя за время одного периода не только величину, но в общем случае и знак, суммарная мгновенная мощность всех фаз остается величиной постоянной в течение всего периода синусоидальной ЭДС (см. рис. 5,б).

Уравновешенность имеет важнейшее практическое значение. Если бы суммарная мгновенная мощность пульсировала, то на валу между турбиной и генератором действовал бы пульсирующий момент. Такая переменная механическая нагрузка вредно отражалась бы на энергогенерирующей установке, сокращая срок ее службы. Эти же соображения относятся и к многофазным электродвигателям.


Если симметрия нарушается (двухфазная система Тесла в силу своей специфики в расчет не принимается), то нарушается и уравновешенность. Поэтому в энергетике строго следят за тем, чтобы нагрузка генератора оставалась симметричной.


Преимущества трехфазного тока заключаются в экономичности передачи на большие расстояния и.  

Преимущества трехфазного тока оказались настолько значительными, что уже со второй половины 90 - х годов началось широкое строительство электростанций трехфазного тока и постепенное вытеснение ими станций однофазного и постоянного тока.  


Одним из преимуществ трехфазного тока является его способность создавать вращающееся магнитное поле.  

В чем заключается преимущество трехфазного тока перед однофазным.  

Но экономией не исчерпываются преимущества трехфазного тока. С его помощью удается получить вращающееся магнитное поле.  

Из рассмотренных примеров достаточно отчетливо видим преимущества трехфазного тока при передаче электрической энергии по проводам. Но самым существенным достоинством трехфазных систем является их удобство для устройства электрических двигателей.  

Измерение мощности в трехфазной системе с нулевым проводом. Мощность нагрузки равна сумме показаний трех ваттметров.  

Из рассмотренных примеров достаточно отчетливо видим преимущества трехфазного тока.  


Электрическая энергия в настоящее время почти исключительно производится и распределяется как энергия трехфазного переменного тока. Выбор трехфазного переменного тока в качестве основной промышленной системы обусловлен рядом преимуществ трехфазного тока по сравнению с другими системами.  

Доливо-Добровольский разрабатывал все звенья трехфазной системы и внедрял ее в Европе. Подлинным триумфом трехфазного тока явилась установка по передаче энергии на расстояние 175 км от Лауфенского водопада до Франкфурта на Майне, осуществленная М. О. Доливо-Добровольским в 1891 г. Преимущества трехфазного тока были несомненны и он быстро получил всеобщее признание и повсеместное применение.  

Доливо-Добровольский разрабатывал все звенья трехфазной системы и внедрял ее в Европе. Подлинным триумфом трехфазного тока явилась установка по передаче энергии на расстояние 175 Км от Лауфенского водопада до Франкфурта-на - Майне, осуществленная М. О. Доливо-Добровольским в 1891 г. Преимущества трехфазного тока были несомненны, и он быстро получил общее признание и повсеместное применение.  

В 1887 - 1888 гг. физик-инженер Никола Тесла сконструировал двухфазный асинхронный двигатель (наименование асинхронный будет пояснено в следующем параграфе), а в 1889 г. М. О. Доливо-Добровольский изобрел и построил трехфазный асинхронный двигатель. Доли-во - Добровольский разрабатывал все звенья трехфазной системы и внедрял ее в Европе. Подлинным триумфом трехфазного тока явилась установка по передаче энергии на расстояние 175 км от Лауфенского водопада до Франкфурта-на - Майне, осуществленнная М. О. Доливо-До - бровольским в 1891 г. Преимущества трехфазного тока были несомненны и он быстро получил всеобщее признание и повсеместное применение.  

Страницы:      1

Рабочее напряжение однофазной сети равняется 220 вольт. Для трехфазной сети этот показатель равняется 380 вольт. Очевидно, что второе значение гораздо выше общепринятых в городских квартирах.

Поэтому, особое внимание стоит уделить электробезопасности. В современном быту очень редко хозяева придерживаются норм защиты себя и электрооборудования. Так, системы УЗО монтируются далеко не в каждом частном доме, это считается прерогативой технически «подкованных» владельцев. Электрощиты должны вовремя ремонтироваться, устаревшие части проводки заменяться. Несчастный случай может иметь летальный исход, особенно если это трехфазная цепь с высоким напряжением.

Согласно нормам пожарной безопасности, трехфазный ввод относится к более высокой категории опасности, так как ток при замыкании в напряжении 380 вольт гораздо выше.

К недостаткам можно отнести:

Необходимость дополнительных разрешений на подключение трехфазного тока от энергосберегающей компании. Порой, получение этих разрешений может занять много времени, и ещё не факт, что вы его получите.

Повышенная опасность поражения током. Если дом деревянный или проводка так или иначе может соприкасаться с водой, желательно установить дополнительный трехполюсный автомат перед самым вводом в здание.

Габариты вводного щита. Для владельцев больших загородных домов это не проблема, всем остальным стоит принять этот фактор во внимание.

Для трехфазного щита следует установить ограничители перенапряжения. Данная мера будет не лишней даже для однофазной сети. Индивидуальный рабочий ноль может оборваться, а это чревато перенапряжением как минимум в одной из фаз.

Достоинства трехфазно ввода:

Перераспределение нагрузки между фазами, избегая при этом «перекоса фаз».

В сеть можно включить мощных трехфазных электроприемников. Это преимущество является главным, по сравнению с другими. К мощным потребителям энергии относятся котлы, различное электрооборудование переменного тока.

Для трехфазной сети снижен номинал вводной защиты и сечения кабелей.

Далее, если получить нужные разрешающие документы, и обзавестись лояльностью компании – можно увеличить максимально разрешенную мощность потребления электроэнергии. Особенно востребовано это преимущество для владельцев крупных коттеджей или больших загородных домов.

На практике, востребованность трехфазной цепи растет с увеличением площади жилья. Если конкретно – 100 и более квадратных метров. В таком жилье много потребителей тока, а трехфазная цепь позволяет грамотно распределить нагрузку.

Как только установлена отопительная система, нужно провести испытание, которое проверит давление в отопительных системах . Благодаря такому испытанию можно узнать, герметична ли система и есть ли у нее недостатки, которые необходимо исправить еще до ввода ее в эксплуатацию.

Трехфазная цепь является частным случаем многофазных электрических систем, представляющих собой совокупность электрических цепей, в которых действуют ЭДС одинаковой частоты, сдвинутые по фазе относительно друг друга на определенный угол. Отметим, что обычно эти ЭДС, в первую очередь в силовой энергетике, синусоидальны. Однако, в современных электромеханических системах, где для управления исполнительными двигателями используются преобразователи частоты, система напряжений в общем случае является несинусоидальной. Каждую из частей многофазной системы, характеризующуюся одинаковым током, называют фазой, т.е. фаза – это участок цепи, относящийся к соответствующей обмотке генератора или трансформатора, линии и нагрузке.

Таким образом, понятие «фаза» имеет в электротехнике два различных значения:

    фаза как аргумент синусоидально изменяющейся величины;

    фаза как составная часть многофазной электрической системы.

Разработка многофазных систем была обусловлена исторически. Исследования в данной области были вызваны требованиями развивающегося производства, а успехам в развитии многофазных систем способствовали открытия в физике электрических и магнитных явлений.

Важнейшей предпосылкой разработки многофазных электрических систем явилось открытие явления вращающегося магнитного поля (Г.Феррарис и Н.Тесла, 1888 г.). Первые электрические двигатели были двухфазными, но они имели невысокие рабочие характеристики. Наиболее рациональной и перспективной оказалась трехфазная система, основные преимущества которой будут рассмотрены далее. Большой вклад в разработку трехфазных систем внес выдающийся русский ученый-электротехник М.О.Доливо-Добровольский, создавший трехфазные асинхронные двигатели, трансформаторы, предложивший трех- и четырехпроводные цепи, в связи с чем по праву считающийся основоположником трехфазных систем.

Источником трехфазного напряжения является трехфазный генератор, на статоре которого (см. рис. 1) размещена трехфазная обмотка. Фазы этой обмотки располагаются таким образом, чтобы их магнитные оси были сдвинуты в пространстве друг относительно друга на эл. рад. На рис. 1 каждая фаза статора условно показана в виде одного витка. Начала обмоток принято обозначать заглавными буквами А,В,С, а концы- соответственно прописными x,y,z. ЭДС в неподвижных обмотках статора индуцируются в результате пересечения их витков магнитным полем, создаваемым током обмотки возбуждения вращающегося ротора (на рис. 1 ротор условно изображен в виде постоянного магнита, что используется на практике при относительно небольших мощностях). При вращении ротора с равномерной скоростью в обмотках фаз статора индуцируются периодически изменяющиеся синусоидальные ЭДС одинаковой частоты и амплитуды, но отличающиеся вследствие пространственного сдвига друг от друга по фазе нарад. (см. рис. 2).

Трехфазные системы в настоящее время получили наибольшее распространение. На трехфазном токе работают все крупные электростанции и потребители, что связано с рядом преимуществ трехфазных цепей перед однофазными, важнейшими из которых являются:

Экономичность передачи электроэнергии на большие расстояния;

Самым надежным и экономичным, удовлетворяющим требованиям промышленного электропривода является асинхронный двигатель с короткозамкнутым ротором;

Возможность получения с помощью неподвижных обмоток вращающегося магнитного поля, на чем основана работа синхронного и асинхронного двигателей, а также ряда других электротехнических устройств;

Уравновешенность симметричных трехфазных систем.

Для рассмотрения важнейшего свойства уравновешенности трехфазной системы, которое будет доказано далее, введем понятие симметрии многофазной системы.

Система ЭДС (напряжений, токов и т.д.) называется симметричной, если она состоит из m одинаковых по модулю векторов ЭДС (напряжений, токов и т.д.), сдвинутых по фазе друг относительно друга на одинаковый угол . В частности векторная диаграмма для симметричной системы ЭДС, соответствующей трехфазной системе синусоид на рис. 2, представлена на рис. 3.


Рис.3

Рис.4

Из несимметричных систем наибольший практический интерес представляет двухфазная система с 90-градусным сдвигом фаз (см. рис. 4).

Все симметричные трех- и m-фазные (m>3) системы, а также двухфазная система являются уравновешенными. Это означает, что хотя в отдельных фазах мгновенная мощность пульсирует (см. рис. 5,а), изменяя за время одного периода не только величину, но в общем случае и знак, суммарная мгновенная мощность всех фаз остается величиной постоянной в течение всего периода синусоидальной ЭДС (см. рис. 5,б).

Уравновешенность имеет важнейшее практическое значение. Если бы суммарная мгновенная мощность пульсировала, то на валу между турбиной и генератором действовал бы пульсирующий момент. Такая переменная механическая нагрузка вредно отражалась бы на энергогенерирующей установке, сокращая срок ее службы. Эти же соображения относятся и к многофазным электродвигателям.


Если симметрия нарушается (двухфазная система Тесла в силу своей специфики в расчет не принимается), то нарушается и уравновешенность. Поэтому в энергетике строго следят за тем, чтобы нагрузка генератора оставалась симметричной.

Схемы соединения трехфазных систем

Трехфазный генератор (трансформатор) имеет три выходные обмотки, одинаковые по числу витков, но развивающие ЭДС, сдвинутые по фазе на 1200. Можно было бы использовать систему, в которой фазы обмотки генератора не были бы гальванически соединены друг с другом. Это так называемая несвязная система. В этом случае каждую фазу генератора необходимо соединять с приемником двумя проводами, т.е. будет иметь место шестипроводная линия, что неэкономично. В этой связи подобные системы не получили широкого применения на практике.

Для уменьшения количества проводов в линии фазы генератора гальванически связывают между собой. Различают два вида соединений: в звезду и в треугольник. В свою очередь при соединении в звезду система может быть трех- и четырехпроводной.

Соединение в звезду

На рис. 6 приведена трехфазная система при соединении фаз генератора и нагрузки в звезду. Здесь провода АА’, ВВ’ и СС’ – линейные провода.


Линейным называется провод, соединяющий начала фаз обмотки генератора и приемника. Точка, в которой концы фаз соединяются в общий узел, называется нейтральной (на рис. 6 N и N’ – соответственно нейтральные точки генератора и нагрузки).

Провод, соединяющий нейтральные точки генератора и приемника, называется нейтральным (на рис. 6 показан пунктиром). Трехфазная система при соединении в звезду без нейтрального провода называется трехпроводной, с нейтральным проводом – четырехпроводной.

Все величины, относящиеся к фазам, носят название фазных переменных, к линии - линейных. Как видно из схемы на рис. 6, при соединении в звезду линейные токи иравны соответствующим фазным токам. При наличии нейтрального провода ток в нейтральном проводе. Если система фазных токов симметрична, то. Следовательно, если бы симметрия токов была гарантирована, то нейтральный провод был бы не нужен. Как будет показано далее, нейтральный провод обеспечивает поддержание симметрии напряжений на нагрузке при несимметрии самой нагрузки.

Поскольку напряжение на источнике противоположно направлению его ЭДС, фазные напряжения генератора (см. рис. 6) действуют от точек А,В и С к нейтральной точке N; - фазные напряжения нагрузки.

Линейные напряжения действуют между линейными проводами. В соответствии со вторым законом Кирхгофа для линейных напряжений можно записать

;

;

.

Отметим, что всегда- как сумма напряжений по замкнутому контуру.

На рис. 7 представлена векторная диаграмма для симметричной системы напряжений. Как показывает ее анализ (лучи фазных напряжений образуют стороны равнобедренных треугольников с углами при осно. вании, равными 300), в этом случае

Обычно при расчетах принимается . Тогда для случаяпрямого чередования фаз ,(приобратном чередовании фаз фазовые сдвиги у именяются местами). С учетом этого на основании соотношений (1) …(3) могут быть определены комплексы линейных напряжений. Однако при симметрии напряжений эти величины легко определяются непосредственно из векторной диаграммы на рис. 7. Направляя вещественную ось системы координат по вектору(его начальная фаза равна нулю), отсчитываем фазовые сдвиги линейных напряжений по отношению к этой оси, а их модули определяем в соответствии с (4). Так для линейных напряженийиполучаем:;.

Соединение в треугольник

В связи с тем, что значительная часть приемников, включаемых в трехфазные цепи, бывает несимметричной, очень важно на практике, например, в схемах с осветительными приборами, обеспечивать независимость режимов работы отдельных фаз. Кроме четырехпроводной, подобными свойствами обладают и трехпроводные цепи при соединении фаз приемника в треугольник. Но в треугольник также можно соединить и фазы генератора (см. рис. 8).


Для симметричной системы ЭДС имеем

.

Таким образом, при отсутствии нагрузки в фазах генератора в схеме на рис. 8 токи будут равны нулю. Однако, если поменять местами начало и конец любой из фаз, то и в треугольнике будет протекать ток короткого замыкания. Следовательно, для треугольника нужно строго соблюдать порядок соединения фаз: начало одной фазы соединяется с концом другой.

Схема соединения фаз генератора и приемника в треугольник представлена на рис. 9.

Очевидно, что при соединении в треугольник линейные напряжения равны соответствующим фазным. По первому закону Кирхгофа связь между линейными и фазными токами приемника определяется соотношениями

Аналогично можно выразить линейные токи через фазные токи генератора.

На рис. 10 представлена векторная диаграмма симметричной системы линейных и фазных токов. Ее анализ показывает, что при симметрии токов

В заключение отметим, что помимо рассмотренных соединений «звезда - звезда» и «треугольник - треугольник» на практике также применяются схемы «звезда - треугольник» и «треугольник - звезда».

Литература

    Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.

    Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Контрольные вопросы и задачи

Лекция Трёхфазные электрические цепи

Совокупность электрических цепей, в которых действуют синусоидальные ЭДС одинаковой частоты и амплитуды, сдвинутые относительно друг друга по фазе и создаваемые в одном источнике электрической энергии, называется многофазной системой электрических цепей. Каждую из однофазных цепей, входящую в многофазную систему, принято наз фазой.

Наибольшее распространение в современной энергетике получили трёхфазные цепи, которые представляют собой частный случай многофазных систем переменного тока.

Под трёхфазной симметричной системой ЭДС понимают совокупность трёх синусоидальных ЭДС одинаковой частоты и амплитуды, сдвинутых по фазе на угол 120º. И создаваемых в одном источнике электрической энергии ().

Чтобы отличить три ЭДС их обозначают соответствующим образом. Если одну из ЭДС обозначить через EA, то отстающую от неё на угол 120º ЭДС обозначают EB, а опережающую на 120º - EC.

Последовательность прохождения ЭДС через одинаковые значения (например через нулевое) наз. последовательностью фаз.

Трёхфазная цепь состоит из трёх основных частей:

1) Трёхфазного генератора - в котором механическая энергия преобразуется в электрическую с трёхфазной системой ЭДС ;

2) Линии электропередачи (куда входят не только сами линии, но и трансф. подстанции с необходимым оборудованием);

3) приёмников энергии которые могут быть как трёхфазными, так и однофазными.

Преимущества трёхфазных цепей.

1. Простота получения вращающегося магнитного поля, применяемого в трёхфазных асинхронных эл. двигателях (основных потребителях электр. энергии) (около 70 %).

3. Меньше затраты при передаче энергии.

4. Постоянство мощности в определённых условиях.

Генератор - синхронная машина с тремя симметрично расположенными обмотками на статоре (Рис. 5.2)

Способы изображения 3-х фазн. симм. сист. ЭДС.

3-х фазн. симметричная система ЭДС может быть изображена Графиками, тригонометрич. ф-циями, и функциями комплексного переменного.

В 3-х фазн. симм. сист. ЭДС. справедливо рав-во

2. Если синусоид. ЭДС фазы A принять за исходную фазу равной нулю, то мгновенные значения ЭДС можно выразить, то мгновенные значения ЭДС можно выразить Тригонометрическими ф-циями

;

3. Векторами.

И в этом случае геометрическая сумма векторов ЭДС равна нулю

Прямая последовательность черед. фаз АВС .

4. Изображение ЭДС ф-циями комплексного переменного.

; ;

Способы соединения фаз трёхфазного генератора.

Получили распростр. соединение фаз «звездой» и «треугольником»

Векторная диаграмма.

За условные полож. направления Фазных напряжений принимают направление от начала к концу фаз обмоток а Линейных напряжений от последующей.

Тогда по второму закону Кирхгофа

Или комплексные значения

Соотношение между фазными и линейными напряжениями из вект. диаграммы

Основные схемы соединения 3-х фазных цепей

Соединение «звезда»-«звезда» с нулевым проводом. (Трёхфазная четырёхпроводная цепь)

Если сопротивл. проводов пренебречь

Токи в фазах

Ток в нейтрали

При симметричной нагрузке сумма токов равна нулю и ток в нулевом проводе отсутствует. I0=0

Отпадает необходимость в нулевом проводе (Векторная диагр. токов и напряж)

При неравномерной нагрузке ток в нулевом провод не равен нулю

Пусть Сопротивл. фаз равны между собой по модулю (6,35 Ом) но имеют различный характер

Определить ток в нулевом проводе

Решение: Построим векторную диаграмму токов и напряжений:

Токи по модулю во всех фазах равны

Если учесть сопротивление нейтрального провода