Случайные процессы и их характеристики. Комплексные случайные функции и их характеристики

Лабораторная работа № 4

СЛУЧАЙНЫЕ ПРОЦЕССЫ
И ИХ ХАРАКТЕРИСТИКИ

4.1. ЦЕЛЬ РАБОТЫ

Ознакомление с основными понятиями теории случайных процессов. Выполнение измерений моментных характеристик и оценки ПРВ мгновенных значений случайных процессов. Анализ вида автокорреляционной функции (АКФ) и спектральной плотности мощности (СПМ) случайного процесса. Исследование преобразований случайного процесса линейными стационарными и нелинейными безынерционными цепями.

4.2. ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Случайные события и случайные величины
Событие , которое может произойти или не произойти в некотором опыте, называется случайным событием и характеризуется вероятностью осуществления
. Случайная величина (СВ)
может принять в опыте одно значение из некоторого множества
; это значение называется реализацией данной СВ. может быть, например, множеством вещественных чисел или его подмножеством. Если множество конечно или счетно (дискретная СВ), можно говорить о вероятности
осуществления события, которое заключается в принятии случайной величиной значения , т. е. на множестве значений дискретной случайной величины задается распределение вероятностей . Если множество несчетно (например, вся вещественная прямая), то полное описание случайной величины дает функция распределения, определяемая выражением

,

где
. Если функция распределения непрерывна и дифференцируема, то можно определить плотность распределения вероятностей (ПРВ), называемую также для краткости плотностью вероятности
(а иногда просто плотностью):

, при этом
.

Очевидно, функция распределения – неотрицательная неубывающая функция со свойствами
,
. Следовательно,
ПРВ – неотрицательная функция, удовлетворяющая условию нормировки
.

Иногда ограничиваются числовыми характеристиками случайной величины, чаще всего моментами . Начальный момент -го порядка (-й начальный момент)

,

где горизонтальная черта и
– символические обозначения интегрального оператора усреднения по ансамблю . Первый начальный момент
, называется математическим ожиданием или центром распределения.

Центральный момент -го порядка (-й центральный момент)

Наиболее употребительным из центральных моментов является второй центральный момент, или дисперсия

Вместо дисперсии часто оперируют среднеквадратическим отклонением (СКО) случайной величины
.

^ Средний квадрат , или второй начальный момент
, связан с дисперсией и математическим ожиданием:

Для описания формы ПРВ используют коэффициент асимметрии
и коэффициент эксцесса
(иногда эксцесс характеризуют величиной
).

Часто используется нормальное, или гауссовское (гауссово), распределение с ПРВ

,

где и – параметры распределения (математическое ожидание и СКО соответственно). Для гауссовского распределения
,
.

Две случайные величины и характеризуются совместной плотностью распределения
. Числовыми характеристиками совместной плотности служат начальные и центральные смешанные моменты

,
,

где и – произвольные целые положительные числа;
и – математические ожидания СВ x и y .

Наиболее часто используются смешанные моменты второго порядка – начальный (корреляционный момент):

и центральный (ковариационный момент, или ковариация )

.

Для пары гауссовских случайных величин двумерная совместная ПРВ имеет вид

где , – среднеквадратические отклонения;
– математические ожидания; коэффициент корреляции – нормированный ковариационный момент

.

При нулевом коэффициенте корреляции очевидно,

,

т. е. некоррелированные гауссовские случайные величины независимы.
^

Случайные процессы

Случайный процесс – это последовательность случайных величин, упорядоченная по возрастанию некоторой переменной (чаще всего времени). Перейти от описания случайной величины к описанию случайного процесса можно, рассматривая совместные распределения двух, трех и более значений процесса в некоторые различные моменты времени. В частности, рассматривая процесс в временных сечениях (при
), получаем -мерные совместные функцию распределения и плотность распределения вероятностей случайных величин

, определяемые выражением

.

Случайный процесс считается полностью определенным, если для любого можно записать его совместную ПРВ при любом выборе моментов времени
.

Часто при описании случайного процесса можно ограничиться совокупностью его смешанных начальных моментов (если они существуют, т.е. сходятся соответствующие интегралы)

и смешанных центральных моментов

при целых неотрицательных
и целом .

В общем случае моменты совместной ПРВ зависят от расположения сечений на оси времени и называются моментными функциями . Чаще всего используют второй смешанный центральный момент

,

называемый функцией автокорреляции или автокорреляционной функцией (АКФ). Напомним, что здесь и далее явно не указана зависимость от времени, а именно – функциями времени являются
,
и
.

Можно рассматривать совместно два случайных процесса
и
; такое рассмотрение предполагает их описание в виде совместной многомерной ПРВ, а также в виде совокупности всех моментов, в том числе смешанных. Наиболее часто при этом используют второй смешанный центральный момент

,

называемый взаимно корреляционной функцией
.

Среди всех случайных процессов выделяют СП, для которых совместная -мерная ПРВ не изменяется при одновременном изменении (сдвиге) всех временных сечений на одну и ту же величину. Такие процессы называются стационарными в узком смысле или строго стационарными .

Чаще рассматривают более широкий класс случайных процессов с ослабленным свойствам стационарности. СП называется стационарным в широком смысле , если при одновременном сдвиге сечений не изменяются лишь его моменты не выше второго порядка. Практически это означает, что СП стационарен в широком смысле, если он имеет постоянные среднее (математическое ожидание ) и дисперсию
, а АКФ зависит только от разности моментов времени, но не от их положений на временнóй оси:

1)
,

2) ,
.

Заметим, что
, откуда и следует постоянство дисперсии.

Нетрудно убедиться, что процесс, стационарный в узком смысле, стационарен и в широком смысле. Обратное утверждение вообще неверно, хотя существуют процессы, для которых стационарность в широком смысле влечет стационарность в узком смысле.

Совместная -мерная ПРВ отсчетов
гауссовского процесса, взятых во временных сечениях , имеет вид

, (4.1)

где – определитель квадратной матрицы, составленной из попарных коэффициентов корреляции отсчетов;
алгебраическое дополнение элемента этой матрицы.

Совместная гауссовская ПРВ при любом полностью определяется математическими ожиданиями, дисперсиями и коэффициентами корреляции отсчетов, т. е. моментными функциями не выше второго порядка. Если гауссовский процесс стационарен в широком смысле, то все математические ожидания одинаковы, все дисперсии (а значит, и СКО) равны друг другу, а коэффициенты корреляции определяются только тем, насколько временные сечения отстоят друг от друга. Тогда, очевидно, ПРВ (4.1) не изменится, если все временные сечения сдвинуть влево или вправо на одну и ту же величину. Отсюда следует, что гауссовский процесс, стационарный в широком смысле, стационарен и в узком смысле (строго стационарен).

Среди строго стационарных случайных процессов часто выделяют более узкий класс эргодических случайных процессов. Для эргодических процессов моменты, найденные усреднением по ансамблю, равны соответствующим моментам, найденным усреднением по времени:

,

(здесь – символическое обозначение оператора усреднения по времени).

В частности, для эргодического процесса математическое ожидание, дисперсия и АКФ равны соответственно

,

,

Эргодичность весьма желательна, так как дает возможность практически измерять (оценивать) числовые характеристики случайного процесса. Дело в том, что обычно наблюдателю доступна лишь одна (хотя, возможно, достаточно длинная) реализация случайного процесса. Эргодичность означает, по существу, что эта единственная реализация является полноправным представителем всего ансамбля .

Измерение характеристик эргодического процесса может быть выполнено при помощи простых измерительных устройств; так, если процесс представляет собой напряжение, зависящее от времени, то вольтметр магнитоэлектрической системы измеряет его математическое ожидание (постоянную составляющую), вольтметр электромагнитной или термоэлектрической системы, подключенный через разделительную емкость (для исключения постоянной составляющей), – его среднеквадратическое значение (СКО). Устройство, структурная схема которого показана на рис. 4.1, позволяет измерить значения функции автокорреляции при различных . Фильтр нижних частот играет здесь роль интегратора, конденсатор выполняет центрирование процесса, так как не пропускает постоянную составляющую тока. Это устройство называется коррелометром .


Рис. 4.1

Достаточными условиями эргодичности стационарного случайного процесса служат условие
, а также менее сильное условие Слуцкого
.
^

Дискретные алгоритмы оценивания параметров СП

Приведенные выше выражения для нахождения оценок параметров СП и корреляционной функции справедливы для непрерывного времени. В данной лабораторной работе (как и во многих современных технических системах и приборах) аналоговые сигналы генерируются и обрабатываются цифровыми устройствами, что приводит к необходимости некоторого изменения соответствующих выражений. В частности, для определения оценки математического ожидания используется выражение выборочного среднего

,

где
– последовательность отсчетов процесса (выборка объема
). Оценкой дисперсии служит выборочная дисперсия , определяемая выражением

.

Оценка автокорреляционной функции, иначе называемая коррелограммой , находится как

.

Оценкой плотности распределения вероятностей мгновенного значения ССП служит гистограмма . Для ее нахождения диапазон возможных значений СП разбивается на интервалов равной ширины, затем для каждого -го интервала подсчитывается количество отсчетов выборки, попавших в него. Гистограмма представляет собой набор чисел
, обычно изображаемый в виде решетчатой диаграммы. Количество интервалов при заданном объеме выборки выбирается исходя из компромисса между точностью оценивания и разрешением (степенью подробности) гистограммы.
^

Корреляционно-спектральная теория случайных процессов

Если интересоваться только моментными характеристиками первого и второго порядка, которые определяют свойство стационарности в широком смысле, то описание стационарного СП осуществляется на уровне автокорреляционной функции
и спектральной плотности мощности
, связанных парой преобразований Фурье (теорема Винера–Хинчина ):

,
.

Очевидно, СПМ – неотрицательная функция. Если процесс имеет ненулевое математическое ожидание , то к СПМ добавляется слагаемое
.

Для вещественного процесса АКФ и СПМ – четные вещественные функции.

Иногда можно ограничиться числовыми характеристиками – интервалом корреляции и эффективной шириной спектра. ^ Интервал корреляции определяют по-разному, в частности, известны следующие определе

Комплексной слуюйной функцией называютфункцию

Z (t )=X (t )+Y (t )i ,

где Х (t ) и Y (t )-действительные случайные функции действительного аргумента t .

Обобщим определения математического ожидания и дисперсии на комплексные случайные функции так, чтобы, в частности, при Y=0 эти характеристики совпали с ранее введенными характеристиками для действительных случайных функций, т. е. чтобы выполнялись требования:

m z (t )=m x (t )(*)

D z (t )=D x (t )(**)

Математическим , ожиданием , комплексной случайной функции Z (t )=Х (t )+Y (t )i называют комплексную функцию (неслучайную)

m z (t )=m x (t )+m y (t )i .

В частности, при Y=0 получим т z (t )=т x (t ),т.е. требование (*) выполняется.

Дисперсией комплексной случайной функции Z (t ) называют математическое ожидание квадрата модуля центрированной функции Z (t ):

D z (t )=M [| (t )| 2 ].

В частности, при Y==0 получим D z (t )= M [| (t )|] 2 =D x (t ), т. е. требование (**) выполняется.

Учитывая, что математическое ожидание суммы равно сумме математических ожиданий слагаемых, имеем

D z (t )=M [| (t )| 2 ]= M {[ (t )] 2 + [ (t ) 2 ]}= M [ (t )] 2 +M [ (t ) 2 ]= D x (t )+D y (t ).

Итак,дисперсия комплексной случайной функции равна сумме дисперсий ее действительной и мнимой частей:

D z (t )=D x (t )+D y (t ).

Известно, что корреляционная функция действительной случайной функции Х (t ) при разных значениях аргументов равна дисперсии D x (t ). Обобщим определение корреляционной функции на комплексные случайные функции Z (t ) так, чтобы при равных значениях аргументов t 1 =t 2 =t корреляционная функция K z (t , t ) была равна дисперсии D z (t ), т. е. чтобы выполнялось требование

K z (t , t )=D z (t ). (***)

Корреляционной функцией комплексной случайной функции Z (t ) называют корреляционный момент сечений (t 1)и (t 2)

K z (t 1 , t 2)= M .

В частности, при равных значениях аргументов

K z (t , t )= M =M [| | 2 ]= D z (t ).

т. е. требование (***) выполняется.

Если действительные случайные функции Х (t ) и Y (t )коррелированы, то

K z (t 1 , t 2)= K x (t 1 , t 2)+K y (t 1 , t 2)+ [R xy (t 2 ,t 1)]+ [ R xy (t 1 ,t 1)].

если Х (t ) и Y (t ) не коррелированы, то

K z (t 1 , t 2)= K x (t 1 , t 2)+K y (t 1 , t 2).

Обобщим определение взаимной корреляционной функции на комплексные случайные функции Z 1 (t )=Х 1 (t )+ Y 1 (t )i и Z 2 (t )=Х 2 (t )+ Y 2 (t )i так, чтобы, в частности, при Y 1 =Y 2 = 0 выполнялось требование

Взаимной корреляционной функцией двух комплексных случайных функций называют функцию (неслучайную)

В частности, при Y 1 =Y 2 =0 получим

т. е. требование (****) выполняется.

Взаимная корреляционная функция двух комплексных случайных функций выражается через взаимные корреляционные функции их действительных и мнимых частей следующей формулой:

Задачи

1. Найти математическое ожидание случайных функций:

a) X (t )=Ut 2 , где U- случайная величина, причем M (U )=5 ,

б ) Х (t )=U cos2t+Vt , где U и V- случайные величины, причем M (U )=3 , M (V )=4 .

Отв. а) m x (t)=5t 2 ; б) т x (t)=3 cos2t+4t.

2. К х (t 1 ,t 2) случайной функции X (t ). Найти корреляционные функции случайных функций:

a) Y (t )=X (t )+t; б) Y (t )=(t +1)X (t ); в) Y (t )=4X (t ).

Отв. a) К y (t 1 ,t 2)= К х (t 1 ,t 2); б) К y (t 1 ,t 2)=(t 1 +1)(t 2 +1) К х (t 1 ,t 2); в) К y (t 1 ,t 2)=16 К x (t 1 ,t 2)=.

3. Задана дисперсия D x (t ) случайной функции Х (t ). Найти дисперсию случайных функций: a) Y (t )(t )+e t б ) Y (t )=tX (t ).

Отв . a) D y (t )=D x (t ); б) D y (t )=t 2 D x (t ).

4. Найти: а) математическое ожидание; б) корреляционную функцию; в) дисперсию случайной функции Х (t )=Usin 2t , где U- случайная величина, причем M (U )=3 , D (U )=6 .

Отв . а)m x (t ) =3sin 2t; б) К х (t 1 ,t 2)= 6sin 2t 1 sin 2t 2 ; в) D x (t )=6sin 2 2t .

5. Найти нормированную корреляционную функцию случайной функции X (t ), зная ее корреляционную функцию К х (t 1 ,t 2)=3cos (t 2 -t 1).

Отв. ρ x (t 1 ,t 2)=cos(t 2 -t 1).

6. Найти: а) взаимную корреляционную функцию; б) нормированную взаимную корреляционную функцию двух случайных функций X (t )=(t +1)U , и Y(t )= (t 2 + 1)U , где U- случайная величина, причем D (U )=7.

Отв . a) R xy (t 1 ,t 2)=7(t 1 +l)(t 2 2 +l); б) ρ xy (t 1 ,t 2)=1.

7. Заданы случайные функции Х (t )= (t- 1)U и Y (t )=t 2 U , где U и V - некоррелированные случайные величины, причем M (U )=2, M (V )= 3, D (U )=4 , D (V )=5 . Найти: а) математическое ожидание; б) корреляционную функцию; в) дисперсию суммы Z (t )=X (t )+Y (t ).

Указание. Убедиться, что взаимная корреляционная функция заданных случайных функций равна нулю и, следовательно, Х (t ) и Y (t ) не коррелированы.

Отв . а) m z (t )=2(t - 1)+3t 2 ; б) К z (t 1 ,t 2)=4(t 1 - l)(t 2 - 1)+6t 1 2 t 2 2 ; в) D z (t )=4(t - 1) 2 +6t 4 .

8. Задано математическое ожидание m x (t )=t 2 +1 случайной функции Х (t ). Найти математическое ожидание ее производной.

9. Задано математическое ожидание m x (t )=t 2 +3 случайной функции Х (t ). Найти математическое ожидание случайной функции Y (t )=tХ" (t )+t 3 .

Отв. m y (t)=t 2 (t+2).

10. Задана корреляционная функция К х (t 1 ,t 2)= случайной функции X (t ). Найти корреляционную функцию ее производной.

11. Задана корреляционная функция К х (t 1 ,t 2)= случайной функции Х (t ). Найти взаимные корреляционные функции.

Основные задачи

Можно выделить два основных вида задач, решение которых требует использования теории случайных функций.

Прямая задача {анализ): заданы параметры некоторого устройства и его вероятностные характеристики (математические ожидания, корреляционные функции, законы распределения) поступающей на его «вход» функции (сигнала, процесса); требуется определить характеристики на «выходе» устройства (по ним судят о «качестве» работы устройства).

Обратная задача {синтез): заданы вероятностные характеристики «входной» и «выходной» функций; требуется спроектировать оптимальное устройство (найти его параметры), осуществляющее преобразование заданной входной функции в такую выходную функцию, которая имеет заданные характеристики. Решение этой задачи требует кроме аппарата случайных функций привлечения и других дисциплин и в настоящей книге не рассматривается.

Определение случайной функции

Случайной функцией называют функцию неслучайного аргумента t, которая при каждом фиксированном значении аргумента является случайной величиной. Случайные функции аргумента t обозначают прописными буквами X{t), Y{t) и т.д.

Например, если U - случайная величина, то функция Х{!)=С U - случайная. Действительно, при каждом фиксированном значении аргумента эта функция является случайной величиной: при t { = 2

получим случайную величину Х х = AU, при t 2 = 1,5 - случайную величину Х 2 = 2,25 U и т.д.

Для краткости дальнейшего изложения введем понятие сечения.

Сечением случайной функции называют случайную величину, соответствующую фиксированному значению аргумента случайной функции. Например, для случайной функции X(t) = t 2 U, приведенной выше, при значениях аргумента 7, = 2 и t 2 = 1,5 были получены соответственно случайные величины X { = AUn Х 2 = 2,2577, которые и являются сечениями заданной случайной функции.

Итак, случайную ф у н к ц и ю можно рассматр и - вать как совокупность случайных величин {Х(?)}, зависящих от параметра t. Возможно и другое истолкование случайной функции, если ввести понятие ее реализации.

Реализацией (траекторией , выборочной функцией) случайной функции X(t) называют неслучайную функцию аргумента t , равной которой может оказаться случайная функция в результате испытания.

Таким образом, если в опыте наблюдают случайную функцию, то в действительности наблюдают одну из возможных ее реализаций; очевидно, при повторении опыта будет наблюдаться другая реализация.

Реализации функции X(t) обозначают строчными буквами x t (t) t x 2 (t) и т.д., где индекс указывает номер испытания. Например, если X(t) = (/sin t, где U - непрерывная случайная величина, которая в первом испытании приняла возможное значение и { = 3, а во втором испытании и 2 = 4,6, то реализациями X(t) являются соответственно неслучайные функции х { (t ) = 3sin t и х 2 (t) = 4,6sin t.

Итак, случайную функцию можно рассматривать как совокупность ее возможных реализаций.

Случайным (стохастическим ) процессом называют случайную функцию аргумента t, который истолковывается как время. Например, если самолет должен лететь с заданной постоянной скоростью, то в действительности вследствие воздействия случайных факторов (колебание температуры, изменение силы ветра и др.), учесть влияние которых заранее нельзя, скорость изменяется. В этом примере скорость самолета - случайная функция от непрерывно изменяющегося аргумента (времени), т.е. скорость есть случайный процесс.

Заметим, что если аргумент случайной функции изменяется дискретно, то соответствующие ему значения случайной функции (случайные величины) образуют случайную последовательность.

Аргументом случайной функции может быть не только время. Например, если измеряется диаметр ткацкой нити вдоль ее длины, то вследствие воздействия случайных факторов диаметр нити изменяется. В этом примере диаметр - случайная функция от непрерывно изменяющегося аргумента (длины нити).

Очевидно, задать случайную функцию аналитически (формулой), вообще говоря, невозможно. В частных случаях, если вид случайной функции известен, а определяющие ее параметры - случайные величины, задать ее аналитически можно. Например, случайными являются функции:

X{t) = sin Qf, где Q - случайная величина,

X(t) = Г/sin t, где U - случайная величина,

X(t) = Г/sin Qt, где О. и }