Схема теплового насоса из кондиционера. Как самостоятельно сделать тепловой насос своими руками

Повышение эффективности системы отопления дома является одной из главных задач его хозяина, поскольку расходы по этой статье в российских климатических условиях весьма значительны. Поэтому задача использования энергии окружающего пространства для отопления весьма интересна, постоянно развивается и остается предметом внимания, особенно в сообществе «самоделкиных». Собрать тепловой насос своими руками вполне доступно подготовленному человеку, поскольку особых сложностей эта работа не представляет, и необходимости в изготовлении деталей сложной конфигурации нет.

Он основан на сборе тепла из окружающего пространства и использовании его для системы отопления дома с целью уменьшения затрат на эту функцию. Аппараты такого типа имеются во многих домах, это холодильники, сплит – системы и кондиционеры. Некоторые из них имеют двойное назначение, выполняя по выбору пользователя либо отопление, либо охлаждение помещений в зависимости от потребности.

Теоретической основой таких машин является обратный цикл Карно. Но, не вникая в подробности, просто опишем процесс работы такого устройства.

Рис.1. Принципиальная схема работы теплового насоса в сети отопления

Рабочим телом в таких устройствах, как и в холодильниках, является фреон или аммиак, который компрессором нагнетается в нагревательный контур. При этом давление внутри системы резко повышается, поскольку выход теплоносителя перекрыт дросселем. Полученным теплом согревается теплоноситель в системе отопления дома, как правило, температура достигает уровня 64 о С. Горячий поток дополняет циркулирующий в основной отопительной сети, снижая потребление топлива. При определенном давлении дроссель открывается, и рабочее тело поступает в камеру испарителя. При этом его температура снижается. Дополнительное тепло получается из регистра сбора тепла. Далее цикл повторяется, как и в устройстве холодильника.

Расчет параметров системы

Мощность, которую потребует самодельный тепловой насос, можно рассчитать из соотношения:

R = ( k * v * T )/860, где

R мощность, необходимая для обогрева помещения

k коэффициент для учета тепловых потерь зданием (1 – качественно утепленное помещение, 4 – дощатый барак);

v – общий объем помещения, подлежащего отоплению;

T наибольший перепад температур внешнего мира и внутридомового пространства;

860 – коэффициент перевода результата расчета в кВт из ккал.

В качестве примера приведем расчет для дома 200 квадратных метров с высотой потолков 2,8 метра:

R = 1 * 200*2,8 * (22 — -25)/860 = 560 * 47 /860 = 30,6 кВт.

Целесообразно использовать теплонасос с запасом мощности 10 – 12%, то есть – порядка 35 кВт.

Нужно обратить внимание на такой показатель, как разность наружной и внутренней температур. Если брать подогретый воздух из окружающего пространства с температурой порядка 7 о С, показатель разности составит (22 – 7) 15 градусов, а мощность теплонасоса составит 9,8 кВт. Сравните два этих показателя и почувствуйте разницу при использовании тепла окружающего пространства.

Состав оборудования

Внешний контур

Для внешнего контура агрегата отопления дома понадобятся трубы. Наибольшей теплопроводностью обладают изделия из металла (но не из нержавеющей стали), поэтому для системы сбора тепла лучше применять их.

Тепловой насос полностью самому (фоторепортаж)
(модераторы , если необходимо, прошу подкорректировать, а то не получилось залить пост правильно)

Добрый день, форумчане!

Расскажу свою историю в которой пытался решить проблему отопления своего дома.

Предыстория:

Имелся только построенный дом на 2,5 этажа. Площадь:

1 этаж 64 м2,
2 этаж 94 м2,
2,5 этаж 55 м2,
гараж 30 м2.

С самого начала был куплен б/у газогенерационный котёл на дровах мощностью 40 к. в. Но как подошло время инсталляции совсем меня перестала радовать перспектива заготовки дров, извечная борьба с мусором, да и по натуре я больше дервиш, могу запросто пару дней дома не появляться.

И тогда я склонился к сжиженному газу. Замечу, что труба природного газа низкого давления проходит в 1,5 км от дома. Но плотность заселения у нас маленькая, и тянуть трубу ради меня одного + проект + инсталляция просто ввергает меня в ужас.

Ставить бочку на несколько кубов на участке я тоже не могу. Не хочется портить внешний вид. Решил установить пару шкафов с батареей 80-литровых пропановых баллонов из 6 штук в каждом.

Газовый оператор уверял, что сами приезжают, сами меняют, вы лишь только нам позвоните. К неудобствам относил лишь головную боль раз в три недели, а также возможность несанкционированного заезда газовой машины на мою бедующую брусчато-легковую стоянку, качения-волочения баллонов по ней же. В общем человеческий фактор. Но проблему разрешил случай:

Идея теплового насоса:

Идею теплового насоса вынашивал давно. Но камнем преткновения было однофазное электричество и допотопный счётчик на 20 ампер максимальной нагрузки. Поменять эклектическое питание на трёхфазное или прибавить мощность в нашем районе пока нет. Но неожиданно мне планово поменяли счётчик на новый, 40 амперный.

Прикинув, решил, что этого хватит на частичный обогрев (2,5 этаж я не планировал использовать зимой), взялся зондировать рынок тепловых насосов. Запрошенные в одной фирме цены (однофазные ТН на 12 киловат) заставили задуматься:

Thermia Diplomat TWS 12 к. в. ч. 6797 евро
Thermia Duo 12 к. в. ч. 5974 евро

Требовалось не менее 45 ампер на пусковой ток.
К тому же, так как планировалось брать теплосъём со скважинной воды, не было уверенности в дебете моей скважины. Чтобы не рисковать такой суммой решил собрать ТН сам, благо какие-то навыки были из жизни. Работал в бытность менеджером по распространению вентиляционно-кондиционерного оборудования.

Концепция:

Решил делать ТН из двух однофазных компрессоров по 24000 БТУ (7 кв. ч. по холоду). Так получался каскад общей тепловой мощностью 16-18 киловат при потреблении электричества при СОP3 около 4-4,5 киловат/часа. Выбор двух компрессоров был обусловлен меньшими стартовыми токами, так как их запуски думано не синхронизировать. А также поэтапность ввода в эксплуатацию. Пока обжит только второй этаж и хватит одного компрессора. Да и поэкспериментировав на одном, потом будет смелее доделать вторую секцию.

Отказался от использования пластинчатых теплообменников. Во первых, из соображения экономии, не хотелось выкладывать за Данфос по 389 евро за штуку. А во вторых, совместить теплообменник с ёмкостью теплоакомулятора, то есть, увеличив инерционность системы, убив тем самым двух зайцев. Да и не хотелось делать водоподготовку для нежных пластинчатых теплообменников, снижая тем самым КПД. А вода у меня плохая, с железом.

Первый этаж уже оснащён обвязкой тёплого пола с примерным шагом 15 см.


Второй этаж радиаторы (слава Богу, хватило скупости поставить их с 1,5 тепловым запасом ранее). Забор теплоносителя из скважины (12,5 м. Установлена на первый слой доломита. +5,9 замер на 03.2008). Утилизация отработанной воды в общедомовую канализацию (двух камерный отстойник + инфильтрационный грунтовый поглотитель). Принудительная циркуляция в контурах теплосъема.

Вот, принципиальная схема:

1. Компрессор (пока один).
2. Конденсатор.
3. Испаритель.
4. Терморегулирующий клапан (ТРВ)

От других устройств безопасности решено отказаться (фильтр-осушитель, смотровое окно, пресостат, ресивер). Но если кто видит смысл их использования, буду рад услышать советы!

Для расчёта системы скачал из Интернета программу расчёта CoolPack 1,46.

И неплохую программку по подбору компрессоров Copeland.

Компрессор:

Удалось закупить у старого знакомого холодильщика, мало б/у-шный компрессор от 7 киловатной сплит системы какого-то корейского кондиционера. Достался практически даром, да и не соврал, масло оказалось внутри совсем прозрачным, поработал всего сезон и был демонтирован в связи изменением концепции помещения заказчиком.

Компрессор оказался на мощность 25500 Бту, а это около 7,5 к. в. по холоду и около 9-9,5 по теплу. Что обрадовало, в корейском сплите стоял добротный компрессор американской фирмы Текумсет. Вот его данные:

Тех. характеристики.

Компрессор на R22 фреоне, а это значит чуть больший коэффициент полезного действия. Температура кипения -10с, конденсации +55с.

Ляпсус номер 1: По старой памяти думал, что на бытовых сплит системах ставятся только компрессоры Скрол типа (спиральные). Мой же оказался поршневым... (Выглядит чуть овальным и внутри болтается обмотка двигателя). Плохо, но не смертельно. К его минусам на четверть меньший ресурс, на четверть меньший коэффициент полезного действия, на четверть более шумный. Но ничего, опыт сын ошибок трудных.

Важно: Фреон R22 по Монреальскому протоколу полностью будет выведен из эксплуатации к 2030 году. С 2001 года запрещён ввод в эксплуатацию ввод новых установок (но я ввожу не новую, а модернизировал старую ). С 2010 года использование R22–го фреона только бывшего в эксплуатации. НО в любой момент можно перевести систему с R22 на его заменитель R422. И не испытывать затруднений далее.

Закрепил компрессор на стене кронштейнами L-300мм. Если буду потом монтировать второй, удлиняю имеющиеся с помощью U-профиля.

2. Конденсатор:

У знакомого сварщика удачно приобрёл бак из нержавейки примерно на 120 литров.
(Кстати, все сварные манипуляции с баком безвозмездно произвел уважаемый сварщик. Но просил упомянуть и его скромную роль для истории!)

Было решено разрезать его на две части вставить змеевик из медной трубы фреоновода, и сварить его обратно. Заодно и вварить несколько технических дюймово-резьбовых соединений.

Формула расчёты площади поверхности трубы медного змеевика:

M2 = kW/0,8 x ∆t

M2 - площадь трубы змеевика в квадратных метрах.
kW – Мощность тепловыделения системой (с компрессором) в киловатах.
0,8 – коофициент теплопроводности меди/воды при условии противотока сред.
∆t – разность температуры воды на входе и выходе системы (см. Схему). У меня это 35с-30с= +5 градусов Цельсия.

Так получается около 2 квадратных метров площади теплообмена змеевика. Я чуть уменьшил, так как температура на входе фреона около +82с градуса, на этом чуть можно сэкономить. Но как писал ранее Дед Морос , не более чем в размере 25% от размера испарителя!

Смоделированная системы в CoolPack показала Cop 2,44 на штатных диаметрах труб теплообменника. И Cop 2,99 при диаметре на шаг выше. А это мне и на руку, так как в будущем рассчитываю присоединить и второй компрессор на эту ветку. Решил использовать медную трубу ½’ дюйма (или 12,7 мм наружного диаметра), холодильную. Но, думаю, можно и обычную сантехническую, не так там и много грязи внутри будет.

Ляпсус номер 2: Использовал трубу со стенкой 0,8 мм. На деле она оказалась очень нежной, чуть передавил и уже она заминается. Сложно работать, тем более без особых навыков. Поэтому рекомендую брать трубу 1мм или 1,2 мм стенки. Так и по долговечности будет дольше.

Важно: Фреоновод змеевика входит в конденсатор сверху, выходит снизу. Так конденсируя жидкий фреон будет скапливаться внизу и уходит без пузырьков.

Взяв, таким образом, 35 метров трубы свернул её в змеевик, намотав на удобный цилиндрический предмет (баллон).

По краям зафиксировал витки двумя алюминиевыми рейками для прочности и равношаговости петель.


Концы вывел наружу с помощью сантехнических переходов на медную тубу на скрутку. Чуть рассверлит их с диаметра 12 на 12,7мм, и вместо обжимного кольца после сборки намотал льна на герметике и зажал контргайкой.

3. Испаритель:

Для испарителя не требовалось высокой температуры, и я выбрал пластмассовую ёмкость типа бочки на 127 литров с широкой горловиной.

Важно: Идеально подошла бы бочка на 65 литров. Но побоялся, труба ¾ очень плохо гнётся, поэтому взял размер побольше. Если у кого другие размеры или есть хороший трубогиб и навыки работы, то можно рискнуть и на этот размер. С бочкой 127 литров размеры моего ТН повысили ожидаемые габариты на 15 см вверх, 5 см в глубину и 10 см в ширину .

Рассчитал и изготовил испаритель по такому же принципу как и у конденсатора. Понадобилось 25 метров трубы ¾’ дюйма (19,2мм наружный) со стенкой 1,2мм. Как рёбра жёсткости использовал отрезки UD профиля для монтажа регипса. Скрутил обычной медной электротехнической проволокой без изоляции.

Важно: Испаритель затопленного типа. То есть жидкая фаза фреона заходит в охлаждаемую воду снизу, испаряется и в газообразном состоянии поднимается вверх к компрессору. Так лучше для теплопередачи.

Переходы можно взять пластмассовые от питьевой трубы PE 20*3/4’ с наружной резьбой, свинтив из с бочкой контргайками и уплотнением из льна и герметика. Подачу и сток воды сделал из обычных канализационных труб и резиновых уплотняющих манжет вставленных враспор.


Испаритель также был установлен на кронштейны L-400мм.


4. ТРВ:

Приобрёл ТРВ фирмы Honeywell (бывшая FLICA). На мою мощность потребовалась дюза к нему 3мм. И наличие выравнивателя давления.


Важно: ТРВ во время пайки нельзя перегреть выше +100с! Поэтому обматал его тряпочкой пропитанной водой для охлаждения. Прошу не ужасаться, после налёт почистил мелкой наждачной.

Припаял трубку линии выравнивания как положено к инструкции по монтажу ТРВ.


Сборка:

Прикупил комплект для жёсткой пайки Rotenberg. И электроды 3 штуки с 0% содержания серебра и 1 штуку с 40% содержания серебра для пайки в стороне компрессора (вибростойкий). С их помощью собрал всю систему.

Важно: Берите сразу баллон Максигаз 400 (жёлтый баллон)! Он не многим дороже Мультигаза 300 (красный), но производитель обещает до +2200с пламени. Но и этого недостаточно для ¾’ трубы. Паялось из рук вон плохо. Приходилось изловчаться, использовать тепловой экран, и т. д. В идеале конечно иметь кислородную горелку.

Да, и надо впаять в систему заправочный пипсик с ниппелем для подсоединения шланга. Не помню с головы его точное название.


Его впаял на входе в компрессор. Рядом же видна и входная труба выравнивателя ТРВ. Она впаивается после испарителя, термобаллона ТРВ, но до компрессора.

Важно: Заправочный пипсик паяем предварительно вывернув из него ниппель. Ни то от жары уплотнитель ниппеля однозначно выйдет из строя.

Редукционные тройники не использовал, так как боялся уменьшения надёжности от дополнительных паечных швов вблизи компрессора. Да и давление в этом месте не большое.


Заправка фреоном:

Собранную, но не заполненную водой систему надо вакуумировать. Лучше использовать вакуумный насос, если нет, то умельцы приспосабливают обычный компрессор от старого холодильника. Можно и просто, продуть-продавить систему фреоном выдавив воздух, но я вам этого не говорил, потому что так делать нельзя!

Баллон фреона самой небольшой ёмкости. Для системы вообще не нужно будет более 2 кг. фреона. Но чем богаты.

Также я приобрёл манометр для замера давления. Но не специальный фреоновый за 10 у. е., а обычный для насосной станции за 3,5 у. е. По нему и ориентировался при заполнении.

Заправил систему, на сколько возможно с помощью внутреннего давления фреона в баллоне. Дал постоять пару дней, давление не упало. Значит, утечки нет. Дополнительно промазал все соединения мыльной пеной, не пузырило.

Важно: Так как в моём случае заправочный ниппель впаян сразу перед компрессором (в дальнейшем будет замеряться давление в этом месте при настройке) ни в коем случае не заправлять систему с работающим компрессором жидким фреоном. Компрессор наверняка выйдет из строя. Только газообразной фазой - баллоном вверх!

Автоматика:

Необходимо однофазное пусковое реле, и при этом, на очень приличный пусковой ток около 40 А! Автоматический предохранитель С группы на 16А. Электрический щиток с DIN рейкой.

Также установил два реле температуры с копелярными термодатчиками. Один поставил на воду на выходе из конденсатора. Выставил примерно на 40 градусов, чтобы отключал систему при достижении водой этой температуры. И на выход воды из испарителя на 0 градусов, чтобы аварийно отключал систему и не разморозил её случаем.

В будущем думаю приобрести простейший контроллер, который учитывает эти две температуры. Но кроме внешнего вида и наглядности пользования у него есть и недостаток – запрограмированные значения сбиваются при даже кратковременном перебои электроснабжения. Пока в раздумьях.


Запуск (пробный):

Перед запуском напумповал в систему примерно 6 бар давления из баллона. Больше не получалось, да и незачем. Кинул временный провод, подсоединил пусковой конденсатор. Наполнил ёмкости водой предварительно. Они постояли с сутки, наполненные и потому, на момент запуска имели комнатную температуру около +15с.

Торжественно включил автомат. Его сразу же выбило. Ещё, то же самое. В этот небольшой промежуток слышно как двигатель гудит, но не запускается. Перебросил клеммы на конденсаторе (их почему-то три). Включил снова автомат. Приятный рокот работающего компрессора приласкал мой слух!

Давление на всасывании сразу упало до 2 бар. Открыл баллон с фреоном, чтобы система заполнялась. По табличке рассчитал необходимое давление кипения фреона.

Для моих необходимых на входе +6 и выходе воды +1, требуется температура кипения -4с. Фреон кипит при такой температуре при давлении 4,3 кг. см. (бар) (атмосфер). Таблицу можно найти и в Интернете.

Как не пытался выставить точное это давление, ничего не получалось. Система пока ещё не выведена на рабочий режим температур. Потому преждевременные регулировки лишь примерны.

Через минут пять подача достигла примерно +80 градусов. Пока не изолированная труба испарения покрылась лёгким инеем. Вода в конденсаторе через минут десять на ощупь уже нагрелась до +30 - +35. Вода в испарителе приблизилась к 0с. Чтобы чего не разморозить отключил систему.

Резюме: Пробный запуск показал полную работоспособность системы. Аномалий не замечено. Потребуется дальнейшие регулировки ТРВ и давления фреона после подключения контура отопления и охлаждения скважинной водой. Поэтому продолжение фоторепортажа и отчёта примерно через две-три недели , когда разберусь с этой частью работы.

К тому моменту, думаю:

1. Подсоединить контур обогрева помещений и контур теплообмена скважинной водой.
2. Произвести полный цикл пусконаладочных работ.
3. Изготовить какой-то корпус.
4. Сделать выводы и дать небольшое резюме.

Важно: ТН получился не такой уж маленький по размерам. Применив за место ёмкостных теплообменников пластинчатые, можно очень сильно сэкономить пространство.

Затраты на изготовление Теплового насоса примерной мощностью 9 киловат час по теплу:

Конденсатор:

Бак нержавейка 100 литров - 25 у. е.
Электроды нержавейка – 6 у. е.
Муфты нержавейка – 5 у. е.
Услуги сварщика (обед) – 5 у. е.
Медная труба 12,7 (1/2”)*0,8мм. 35 метров – 105 у. е.
Медная труба 10*1 мм. 1 метр – 3 у. е.

Отвоздушиватель Ду 15 – 5 у. е.
Предохранительный клапан 2,5 бар – 4 у. е.
Кран сливной Ду 15 – 2 у. е.

Итого: 163 у. е. (к сравнению, пластинчатый теплообменник Данфос 389 у. е)

Испаритель:

Бочка пласм. 120 литров - 12 у. е.
Медная труба 19.2 (3/4”)*1.2мм. 25 метров – 130 у. е.
Медная труба 6*1мм. 1 метр – 2 у. е.
Терморегулирующий вентиль Honeywell (дюза 3мм.) – 42 у. е.
Кронштейны L-400 2 штуки – 9 у. е.
Кран сливной Ду 15 – 2 у. е
Переходы на медь (комплект) – 3 у. е.
РВС труба 50-1м. 2 штуки – 4 у. е.
Резиновые переходы 75*50 2 штуки – 2 у. е.

Итого: 206 у. е. (к сравнению, пластинчатый теплообменник Данфос 389 у. е)

Компрессор:

Компрессор мало б/у 7,2 к. в. (25500 бту) – 30 у. е.
Кронштейны L-300 2 штуки – 8 у. е.
Фреон R22 2 кг. – 8 у. е.
Комплект монтажный – 4 у. е.

Итого: 50 у. е.

Монтажный комплект:

Паяльная лампа ROTENBERG (комплект) – 20 у. е.
Электроды жёсткой пайки (40% серебра) 3 штуки – 3,5 у. е.
Электроды жёсткой пайки (0% серебра) 3 штуки – 0,5 у. е.
Манометр для фреона 7 бар – 4 у. е.
Шланг заправочный - 7 у. е.

Итого: 35 у. е.

Автоматика:

Реле пускателя однофазное 20 А – 10 у. е.
Щиток электрический встраиваемый – 8 у. е.
Предохранитель однофазный С16 А – 4 у. е.

Итого: 22 у. е.

Итого в целом 476 у. е.

Важно: Потребуются на следующем этапе ещё циркуляционные насосы Calpada 25/60-180 60 у. е. и Calpeda 32/60-180 78 у. е. Они хоть и будут вынесены за приделы моего котла, но обычно относятся к самому котлу.

Если отапливать частный дом газом невозможно или слишком дорого, а использовать твердое топливо не удобно, почему бы не извлечь энергию прямо из окружающей среды? Один из самых эффективных вариантов получить необходимые джоули - тепловой насос вода вода. На западе промышленное производство таких агрегатов давно налажено и пользуется высоким спросом. Однако стоимость их довольно высока. Поэтому вопрос о создании теплового насоса своими руками остается весьма актуальным.

Как устроен и работает такой тепловой насос?

Грубо говоря, тепловой насос работает как холодильник, только наоборот. Холодильник выводит часть тепла наружу, чтобы понизить температуру внутри камеры. Поэтому задняя стенка холодильника заметно нагревается. Тепловой же насос «охлаждает» окружающую среду, нагревая теплоноситель, который циркулирует в домовой системе отопления.

Обычно тепловые насосы вода вода состоят из следующего набора устройств:

Наружный контур представляет собой трубу, по которой циркулирует грунтовая вода. Она поступает в систему из скважины, проходит через наружный контур, отдавая системе тепловую энергию с низким потенциалом, а затем сбрасывается в другую скважину. Иногда внутри наружного контура, погруженного в воду, находится специальная жидкость, именуемая «рассолом». Это тоже вполне эффективный способ собрать находящееся в окружающей среде тепло.

Обратите внимание! Если возле дома имеется открытый водоем, его также можно использовать в качестве источника тепла. При этом нет необходимости бурить скважины для забора и сброса грунтовой воды.

Тепло грунтовой воды поступает в испаритель. Сюда же попадает через капиллярное отверстие находящийся под давлением хладагент. Снижение давления вызывает процесс испарения и тепло с внутренних стенок испарителя передается хладагенту. Газообразный хладагент поступает в компрессор, где происходит процесс его сжатия, после чего он направляется в конденсатор.

Здесь хладагент снова переходит в жидкое состояние, а полученная в результате энергия используется для подогрева теплоносителя, который циркулирует в трубах отопительной системы дома. Таким образом, низкопотенциальная тепловая энергия воды преобразуется в энергию с высоким потенциалом и позволяет даже в сильные морозы обогревать дом вполне эффективно. Наглядно этот процесс представлен на схеме теплового насоса вода вода.

На схеме теплового насоса «вода-вода» показан процесс получения из окружающей среды тепловой энергии с низким потенциалом в высокопотенциальную энергию для обогрева дома и подогрева воды

Качество работы теплового насоса во многом зависит от колебаний температуры воды. Чем стабильнее температура, тем лучше обогрев. В скважине температура воды на протяжении всего года колеблется в пределах 7-12 градусов, что позволяет использовать оборудование очень эффективно. Чтобы автоматизировать работу устройства, используют терморегулятор, который включает и отключает компрессор, поддерживая в температуру в помещениях на определенном уровне.

Как самостоятельно сделать такое устройство?

Самодельный тепловой насос типа «вода-вода» представляет собой набор готовых агрегатов, которые необходимо подключить в правильной последовательности. Выглядит просто, но на практике все дело можно испортить из-за отсутствия грамотных расчетов. Они необходимы, чтобы выяснить оптимальную мощность компрессора, диаметр трубы теплообменника, а также прочие параметры системы. У неспециалистов есть несколько вариантов решения этой проблемы:

  • воспользоваться специальным программным обеспечением (например, программами CoolPack 1,46 и Copeland);
  • использовать он-лайн калькуляторы, которые предлагаются на сайтах производителей такого оборудования;
  • пригласить специалиста, который поможет все рассчитать за определенную плату или по доброте душевной.

Итак, теперь о каждой детали подробнее.

Деталь #1 - компрессор

Самый простой способ обзавестись подходящим компрессором - снять его с кондиционера, например, со сплит-системы марки LG. Семиваттный компрессор имеет мощность в 9,7кВт при производстве тепла и 7,5 кВт - при охлаждении. Дополнительное достоинство таких компрессоров - низкий уровень шума при работе.

Компрессор для теплового насоса вода-вода можно снять со старого кондиционера. Предпочтительнее выбирать модель, подходящую по мощности и работающую бесшумно

Во многих компрессорах используется фреон R22, температура кипения которого составляет -10, конденсирования - +55. В 2030 году этот хладагент будет запрещен к использованию. Достойной альтернативой может стать более «молодой» фреон R422. Впрочем, сменить хладагент можно не только при создании теплового насоса, но и в любое подходящее время.

Деталь #2 - конденсатор

Для изготовления конденсатора можно использовать бак из нержавеющей стали примерно на 120 литров. Его разрезают пополам, внутрь монтируют медный змеевик, приваривают соединения с двухдюймовой резьбой, затем половинки бака соединяют с помощью сварки. Площадь змеевика, по которому будет циркулировать хладагент, рассчитывается по формуле:

ПЗ = МТ/0,8РТ, где:

  • ПЗ - площадь змеевика;
  • МТ - Мощность тепла, выдаваемого системой, кВт;
  • 0,8 - коэффициент теплопроводности при взаимодействии воды и меди;
  • РТ - разница температуры воды на входе в систему и на выходе из нее, градусов Цельсия.

Для изготовления змеевика подойдет полудюймовая медная труба, специальная холодильная или чистая сантехническая. Рекомендованная толщина стенки трубы 1-1,2 мм. Чтобы превратить отрезок трубы нужной длины в змеевик, достаточно намотать ее на любой подходящий цилиндр, например, на газовый баллон. Концы змеевика выводят наружу, используя сантехнические переходники. Для обеспечения герметичности соединения следует воспользоваться льном и зажимной гайкой.

Чтобы сделать змеевик для конденсатора теплового насоса вода-вода, нужно аккуратно намотать медную трубу на баллон. Зафиксировать шаг витков поможет металлическая рейка

Обратите внимание, что вход фреоновода должен располагаться в в верхней части конденсатора, чтобы предотвратить образование пузырьков.

Деталь #3 - испаритель

На роль испарителя подойдет пластиковая бочка объемом 127 л. Удобнее, если у нее будет широкая горловина. Рассчитывают испаритель также, как и конденсатор. Медную трубу можно скрутить медной же проволокой, без всякой изоляции.

Самодельный испаритель для теплового насоса вода-вода можно сделать из пластиковой бочки с широкой горловиной. Змеевик можно уложить и в меньшую емкость, но удобнее работать с бочкой объемом более 120 л

Специалисты рекомендуют использовать для самодельных тепловых насосов испарители «затопленного» типа, в которых сжиженный хладагент поступает в воду снизу, а испаряется в верхней части. Переходники можно изготовить из горловин обычных пластиковых бутылок, которые фиксируют с помощью льна и герметика. Для подачи и отвода воды подойдут стандартные канализационные трубы. При монтаже терморегулирующего клапана, перед началом пайки трубы линии выравнивания, следует обмотать его влажной тканью, поскольку этот элемент нельзя нагревать более, чем до 100 градусов.

Сборка и заправка фреоном

Чтобы собрать подготовленные устройства в единую систему, понадобится сварочный аппарат. У входа в компрессор рекомендуется сделать заправочный клапан, который пригодится в дальнейшем. Затем с помощью специального вакуумного насоса следует проверить систему на вакуум.

Чтобы заправить систему фреоном, понадобится баллон, содержащий не менее 2 кг хладагента. После заправки рекомендуется выждать несколько дней, проверяя давление в системе. Если оно остается постоянным, значит, протечки отсутствуют. Если же давление снижается, определить места протечек можно самым простым способом: с помощью мыльной пены. Неопытным мастерам лучше обратиться к мастеру, который заправит оборудование профессионально и надежно.

Для автоматического регулирования работы системы рекомендуется использовать пусковое однофазное реле на 40А, предохранитель 16А, электрический щиток и DIN рейку. Понадобится два каппилярных датчика температуры: у выхода из системы (рекомендуемое максимальное значение температуры - 40 градусов) и на выходе из испарителя (температура отключения - 0 градусов, чтобы не допустить замерзания системы). Если для учета показаний обоих термодатчиков используется контроллер, следует помнить, что его настройки могут сбиться при отключении электроэнергии.

Примерно так выглядит один из вариантов самодельного теплового насоса вода-вода. Сверху устройство закрыто металлическим корпусом, на котором монтируется панель управления

После того, как система готова, а ее элементы размещены в удобных местах, следует соорудить две отдельные скважины для забора и сброса грунтовой воды и подвести наружный контур к системе. В местностях, где бурение скважин связано с определенными проблемами, заняться этим вопросом следует в первую очередь. Если скважины пробурить не удастся, возможно, придется выбрать другой вариант теплового насоса, например, «земля-вода».

В следующем видеоматериале продемонстрирована работа насоса самодельного теплового насоса:

Перед тем, как приступать к изготовлению теплового насоса, следует оценить уровень теплоизоляции здания и повысить ее до максимального уровня. Иначе эффективность этой системы будет стремиться к нулю.

Лучше всего применять тепловой насос в комплекте с низкотемпературными системами отопления. Чаще всего агрегат подключают к системе « ». Успешным может быть опыт с системами теплых стен, больших по площади радиаторов и т. п. Эффективность системы будет тем выше, чем меньше разница температур на наружном и внутреннем контурах.

Чтобы снизить затраты на сооружение теплового насоса, рекомендуется использовать дополнительный источник тепла: газовый, электрический или твердотопливный котел. Требуемая мощность и расходы на сооружение теплового насоса будут меньше, а стоимость отопления жилища сократится.

Экология познания. Усадьба: В последние десятилетия у владельцев домов появился довольно большой выбор систем отопления. Уже необязательно подключаться к централизованным сетям и использовать традиционные источники. Можно выбрать оборудование, работающее на альтернативной энергии, но его главный недостаток – дороговизна. Впрочем, если сделать тепловой насос своими руками из старого холодильника, систему можно существенно удешевить.

Сегодня мало кто сомневается в том, что тепловой насос для отопления дома – самое эффективное средство из всех существующих. Оно же - самое дорогое и сложное в исполнении. По этой причине многие домашние умельцы взялись за самостоятельное решение данной проблемы.

Но ввиду ее высокой сложности достижение положительных результатов дается весьма непросто, нужно иметь энтузиазм, терпение и вдобавок хорошо изучить теорию. Наша статья для тех, кто делает первый шаг на пути внедрения у себя дома такого альтернативного источника энергии, как тепловой насос, сделанный своими руками.

Устройство и принцип работы теплового насоса

Для сборки действующей модели теплового насоса не обойтись без знания теории, а точнее, принципа действия этого устройства. Хотелось бы изначально отметить, что утверждения о КПД в 300, 500 и 1000% - это миф или просто маркетинговый ход, рассчитанный на незнание рядовым пользователем законов физики. Так вот, тепловой насос – это устройство, берущее тепловую энергию в одном месте и перемещающее ее в другое с определенным КПД, не превышающим 100%. В отличие от котельных установок, он самостоятельно тепло не производит.

Примером могут служить домашние холодильники и кондиционеры, чья конструкция основана на так называемом цикле Карно, его же использует принцип работы теплового насоса для отопления или ГВС. Суть этого цикла заключается в движении вещества (рабочего тела) по замкнутой системе и меняющего свое агрегатное состояние с жидкого на газообразное и наоборот. В момент перехода выделяется или поглощается огромное количество энергии.

Чтобы пояснить на более доступном языке, перечислим основные элементы, которые включает в себя устройство теплового насоса:

  • компрессор;
  • теплообменник, где рабочее тело переходит в газообразное состояние (испаритель);
  • теплообменник, в котором рабочее тело конденсируется (конденсатор);
  • расширительный (редукционный) клапан;
  • средства управления и автоматики;
  • магистрали из медных трубок.

В качестве рабочего тела выступает вещество, закипающее при низких температурах – фреон. Циркулируя по трубке в виде жидкости, первым делом он попадает в испаритель. После взаимодействия с теплоносителем от внешнего источника (воздух, вода, грунт) рабочее тело испаряется и продолжает свое движение в виде газа. На этом участке давление в системе - низкое. Всю цепочку цикла отражает принципиальная схема теплового насоса:

Пройдя компрессор, фреон под давлением движется ко второму теплообменнику, где ему предстоит сконденсироваться и передать полученное тепло воде, снова приняв жидкое состояние. Далее, рабочее тело попадает в расширительный клапан, давление снова падает и оно продолжает свой путь к испарению. Цикл завершен.

Заводские теплонасосы для жилого дома способны выдавать теплоноситель с температурой 55-60 ºС, этого достаточно для обогрева помещений радиаторами либо теплыми полами. При этом вся система отопления затрачивает электроэнергию на такие цели:

  • питание компрессора;
  • вращение роторов циркуляционных насосов наружного и внутреннего контура;
  • питание средств автоматики и контроля.

Получается, что при потреблении 1 кВт электричества действие теплового насоса может переместить в дом до 5 кВт тепловой энергии извне, отсюда и небылицы о КПД 500%.

Тепловой насос воздух-воздух

Теоретически любая среда, имеющая температуру выше абсолютного нуля (минус 273 ºС), обладает запасом тепловой энергии. А значит, ее можно извлечь, уж тем более это нетрудно сделать при температуре окружающего воздуха минус 10-30 ºС.

Для этой цели служит тепловой насос воздух-воздух, отнимающий тепло у наружной окружающей среды и перемещающий его внутрь частного дома. Это самый доступный способ по цене оборудования и стоимости монтажа, он же – наименее эффективный. Чем крепче мороз на улице, тем меньше тепла удается получить. Принцип действия системы показан на рисунке:

Наружный блок воздушного теплового насоса внешне похож на такой же агрегат сплит-системы, только внутри у него нет компрессора. Остается лишь пластинчатый теплообменник и вентилятор, чьей задачей является повысить интенсивность процесса путем нагнетания через пластины большого количества воздуха.

Тепловой насос вода-вода

Более эффективным вариантом считается тепловой насос вода-вода. Он извлекает тепловую энергию из ближайшего водоема, если таковой есть на расстоянии до 100 м от дома. Другой, более распространенный способ – отбор тепла у грунтовых вод через скважину. По сути, скважин нужно 2: одна для выкачивания воды, другая – для ее сброса. Ниже представлены схемы тепловых насосов, действующих по такому принципу:

Здесь есть свои нюансы. Вода из скважины должна проходить очистку перед попаданием теплообменник, а трубы надо прокладывать ниже глубины промерзания грунта. Другое дело – контур на дне водоема, он заполняется незамерзающей жидкостью (пропиленгликолем), что служит посредником между водой и хладагентом.

Способность обеспечить частный дом тепловой энергией в этом случае зависит от производительности скважины и объема воды в пруде. Также существуют варианты погружения внешнего контура в проточную воду реки или канализационный септик.

Также существуют геотермальные тепловые насосы, чей принцип работы не отличается от предыдущих типов аппаратов, только тепло извлекается из грунта на глубине, где температура всегда одинакова – плюс 7 ºС. Для этого в землю закапывается горизонтальный контур из труб, занимающий большую площадь, либо в скважины глубиной 25 м опускаются геотермальные зонды. В обоих случаях в качестве теплоносителя используется антифриз.

Считается, что работа теплового насоса, добывающего тепло из грунта, - самая стабильная и эффективная. Но покупка и монтаж подобного оборудования очень дороги, а домашние мастера-умельцы редко прибегают к реализации этого варианта.

Как собрать тепловой насос в домашних условиях?

Поскольку термодинамический расчет теплового насоса представляет для большинства домашних мастеров - самодельщиков немалую сложность, приводить его здесь мы не будем. Наша задача – представить несколько действующих моделей, чтобы любой энтузиаст мог взять какую-нибудь из них за основу для создания собственного детища.

Необходимо отметить, что тепловой насос, придуманный и собранный своими руками, для подавляющего большинства рядовых пользователей останется недостижимой мечтой, если не приложить к его изготовлению массу усилий и времени.

Простейший тепловой насос из старого холодильника был описан в статье журнала «Инженер» за 2006 г. Он позиционируется, как нагреватель воздух – воздух для небольшого помещения или теплицы. Кстати, какой бы ни был мощный бытовой холодильник, на обогрев даже небольшого дома его не хватит, а вот на 1 комнатку – вполне. Решение реализуется 2 способами, причем внутренняя автоматика отключения демонтируется и все агрегаты соединяются напрямую для непрерывной работы. В первом случае старый холодильник находится в помещении, конструкция насоса показана на схеме:

Снаружи к нему прокладывается 2 воздуховода и врезается в переднюю дверку. Воздух по верхнему каналу попадает в морозилку, охлаждается и опускается к нижнему воздуховоду из-за увеличения плотности. Затем он покидает корпус холодильника, вытесняемый верхним потоком. Помещение прогревается от теплообменника, расположенного на задней стенке агрегата. По второму способу сделать своими руками тепловой насос так же просто, надо лишь встроить холодильник в наружную стену, как изображено на схеме:

Самодельный обогреватель из холодильника может функционировать до наружной температуры минус 5 ºС, не ниже.

Тепловой насос из кондиционера

Современные сплит-системы, особенно инверторного типа, успешно выполняют функции того же теплового насоса воздух – воздух. Их проблема в том, что эффективность работы падает вместе с наружной температурой, не спасает даже так называемый зимний комплект.

Домашние умельцы подошли к вопросу иначе: собрали самодельный тепловой насос из кондиционера, отбирающий теплоту проточной воды из скважины. По сути, от кондиционера тут используется только компрессор, иногда – внутренний блок, играющий роль фанкойла.

По большому счету, компрессор можно приобрести отдельно. К нему потребуется сделать теплообменник для нагрева воды (конденсатор). Медная трубка с толщиной стенки 1-1.2 мм длиной 35 м наматывается для придания формы змеевика на трубу диаметром 350-400 мм или баллон. После чего витки фиксируются перфорированным уголком, а затем вся конструкция помещается в стальную емкость с патрубками для воды.

Компрессор из сплит-системы присоединяется к нижнему вводу в конденсатор, а к верхнему подключается регулирующий клапан. Таким же образом изготавливается испаритель, для него сгодится обычная пластиковая бочка. Кстати, вместо самодельных емкостных теплообменников можно использовать заводские пластинчатые, но это обойдется недешево.

Сама по себе сборка насоса не слишком сложна, но здесь важно уметь правильно и качественно пропаивать соединения медных трубок. Также для заправки системы фреоном потребуются услуги мастера, не станете же вы специально покупать дополнительное оборудование. Дальше – этап наладки и пуска теплового насоса, который далеко не всегда проходит удачно. Возможно, придется немало повозиться, чтобы добиться результата.

Заключение

Конечно, отопление дома тепловым насосом – мечта многих домовладельцев. К сожалению, стоимость установок слишком высокая, а справиться с собственноручным изготовлением могут единицы. И то зачастую мощности хватает лишь на ГВС, об отоплении речь не идет. Если бы все было так просто, то у нас в каждом доме стоял самодельный тепловой насос, а пока что он остается недоступным широкому кругу пользователей.

Тепловой насос своими руками – это вполне реально. Люди, у которых есть небольшой загородный дом или дача, не редко осуществляют успешную разработку и установку тепловых насосов собственного изготовления.

Как сделать тепловой насос своими руками

Стоит отметить, не всегда работа теплового насоса в отоплении дома полностью удовлетворяет всем требованиям хозяев. Обычно, это является следствием того, что термодинамические расчеты были выполнены неправильно. Результатом такой ошибки становиться система малой мощности, либо система получается слишком мощной, а это связано с перерасходом электроэнергии.

Для подбора системы, имеющей подходящую мощность, следует выполнить расчет теплопотерь постройки, и множество других расчетов. Такой расчет должен выполнять опытный инженер-проектировщик.

Тепловой насос своими руками видео

Насосы для отопления или тепловые насосы

У традиционных источников энергии есть один недостаток — большие финансовые затраты, кроме этого, они почти истощены. Человечеству ничего не остается, как заниматься поиском альтернативных источников энергии. Одними из таких источников на сегодняшний день являются насосы для отопления или тепловые насосы. Тепловой насос является экологически чистым и экономичным способом, обустроить отопление в доме.

Так как чистота окружающей среды в последнее время выходит на первый план,тепловые насосы становятся все более популярными по всей планете. Приблизительные подсчеты показывают, что в мире существует 100 млн. насосов для отопления. Тепловыми насосами наиболее активно пользуются люди в таких странах как США, Япония и в европейских государствах.

Эти государства обладают даже специальными строительными нормами, по которым в новых домах тепловые насосы должны быть установлены в обязательном порядке.

Некоторые страны, к примеру, Швеция, могут похвастаться процентным соотношением тепловых насосов к другим отопительным системам 70 на 30.
Все тепловые насосы делятся на такие подвиды: