Прямоугольная система координат на плоскости и в пространстве. Прямоугольная система координат


Если на плоскости или в трехмерном пространстве ввести систему координат, то мы получим возможность описывать геометрические фигуры и их свойства с помощью уравнений и неравенств, то есть, мы сможем использовать методы алгебры. Поэтому понятие системы координат очень важно.

В этой статье мы покажем как задается прямоугольная декартова система координат на плоскости и в трехмерном пространстве и выясним как определяются координаты точек. Для наглядности приведем графические иллюстрации.

Навигация по странице.

Прямоугольная декартова система координат на плоскости.

Введем прямоугольную систему координат на плоскости.

Для этого проведем на плоскости две взаимно перпендикулярные прямые, выберем на каждой из них положительное направление , указав его стрелочкой, и выберем на каждой из них масштаб (единицу измерения длины). Обозначим точку пересечения этих прямых буквой О и будем считать ее началом отсчета . Так мы получили прямоугольную систему координат на плоскости.

Каждую из прямых с выбранным началом отсчета О , направлением и масштабом называют координатной прямой или координатной осью .

Прямоугольную систему координат на плоскости обычно обозначают Oxy , где Ox и Oy – ее координатные оси. Ось Ox называют осью абсцисс , а ось Oy – осью ординат .

Сейчас условимся с изображением прямоугольной системы координат на плоскости.

Обычно единица измерения длины на осях Ox и Oy выбирается одинаковая и откладывается от начала координат на каждой координатной оси в положительном направлении (отмечается штришком на координатных осях и рядом записывается единица), ось абсцисс направляется вправо, а ось ординат – вверх. Все остальные варианты направления координатных осей сводятся к озвученному (ось Ox - вправо, ось Oy - вверх) при помощи поворота системы координат на некоторый угол относительно начала координат и взгляда на нее с другой стороны плоскости (при необходимости).

Прямоугольную систему координат часто называют декартовой, так как ее на плоскости впервые ввел Рене Декарт. Еще чаще прямоугольную систему координат называют прямоугольной декартовой системой координат, собирая все воедино.

Прямоугольная система координат в трехмерном пространстве.

Аналогично задается прямоугольная система координат Oxyz в трехмерном евклидовом пространстве, только берется не две, а три взаимно перпендикулярных прямых. Другими словами, к координатным осям Оx и Oy добавляется координатная ось Oz , которую называют осью аппликат .

В зависимости от направления координатных осей различают правую и левую прямоугольные системы координат в трехмерном пространстве.

Если смотреть с положительного направления оси Oz и кратчайший поворот от положительного направления оси Ox к положительному направлению оси Oy происходит против хода часовой стрелки, то система координат называется правой .

Если смотреть с положительного направления оси Oz и кратчайший поворот от положительного направления оси Ox к положительному направлению оси Oy происходит по ходу часовой стрелки, то система координат называется левой .


Координаты точки в декартовой системе координат на плоскости.

Сначала рассмотрим координатную прямую Ox и возьмем некоторую точку M на ней.

Каждому действительному числу соответствует единственная точка M на этой координатной прямой. К примеру, точке, расположенной на координатной прямой на расстоянии от начала отсчета в положительном направлении, соответствует число , а числу -3 соответствует точка, расположенная на расстоянии 3 от начала отсчета в отрицательном направлении. Числу 0 соответствует начало отсчета.

С другой стороны, каждой точке M на координатной прямой Ox соответствует действительное число . Это действительное число есть ноль, если точка M совпадает с началом отсчета (с точкой O ). Это действительное число положительно и равно длине отрезка OM в данном масштабе, если точка M удалена от начала отсчета в положительном направлении. Это действительное число отрицательно и равно длине отрезка OM со знаком минус, если точка M удалена от начала отсчета в отрицательном направлении.

Число называется координатой точки M на координатной прямой.

Теперь рассмотрим плоскость с введенной прямоугольной декартовой системой координат. Отметим на этой плоскости произвольную точку М .

Пусть - проекция точки M на прямую Ox , а - проекции точки M на координатную прямую Oy (при необходимости смотрите статью ). То есть, если через точку M провести прямые, перпендикулярные координатным осям Ox и Oy , то точками пересечения этих прямых с прямыми Ox и Oy являются соответственно точки и .

Пусть точке на координатной оси Ox соответствует число , а точке на оси Oy - число .


Каждой точке М плоскости в заданной прямоугольной декартовой системе координат соответствует единственная упорядоченная пара действительных чисел , называемых координатами точки M на плоскости. Координату называют абсциссой точки М , а - ординатой точки М .

Верно и обратное утверждение: каждой упорядоченной паре действительных чисел соответствует точка М плоскости в заданной системе координат.

Координаты точки в прямоугольной системе координат в трехмерном пространстве.

Покажем как определяются координаты точки М в прямоугольной системе координат, заданной в трехмерном пространстве.

Пусть и - проекции точки M на координатные оси Ox , Oy и Oz соответственно. Пусть этим точкам на координатных осях Ox , Oy и Oz соответствуют действительные числа и .

Если через точку О в про-стран-стве мы про-ве-дем три пер-пен-ди-ку-ляр-ные пря-мые, на-зо-вем их, вы-бе-рем на-прав-ле-ние, обо-зна-чим еди-нич-ные от-рез-ки, то мы по-лу-чим пря-мо-уголь-ную си-сте-му ко-ор-ди-нат в про-стран-стве . Оси ко-ор-ди-нат на-зы-ва-ют-ся так: Ох - ось абс-цисс, Оy - ось ор-ди-нат и Оz - ось ап-пли-кат . Вся си-сте-ма ко-ор-ди-нат обо-зна-ча-ет-ся - Oxyz. Таким об-ра-зом, по-яв-ля-ют-ся три ко-ор-ди-нат-ные плос-ко-сти : Оxy, Оxz, Оyz.

При-ве-дем при-мер по-стро-е-ния точки В(4;3;5) в пря-мо-уголь-ной си-сте-ме ко-ор-ди-нат (см. Рис. 1).

Рис. 1. По-стро-е-ние точки B в про-стран-стве

Пер-вая ко-ор-ди-на-та точки B - 4, по-это-му от-кла-ды-ва-ем на Ox 4, про-во-дим пря-мую па-рал-лель-но оси Oy до пе-ре-се-че-ния с пря-мой, про-хо-дя-щей через у=3. Таким об-ра-зом, мы по-лу-ча-ем точку K. Эта точка лежит в плос-ко-сти Oxy и имеет ко-ор-ди-на-ты K(4;3;0). Те-перь нужно про-ве-сти пря-мую па-рал-лель-но оси Oz. И пря-мую, ко-то-рая про-хо-дит через точку с ап-пли-ка-той 5 и па-рал-лель-на диа-го-на-ли па-рал-ле-ло-грам-ма в плос-ко-сти Oxy. На их пе-ре-се-че-нии мы по-лу-чим ис-ко-мую точку B.

Рас-смот-рим рас-по-ло-же-ние точек, у ко-то-рых одна или две ко-ор-ди-на-ты равны 0 (см. Рис. 2).

На-при-мер, точка A(3;-1;0). Нужно про-дол-жить ось Oy влево до зна-че-ния -1, найти точку 3 на оси Ox, и на пе-ре-се-че-нии линий, про-хо-дя-щих через эти зна-че-ния, по-лу-ча-ем точку А. Эта точка имеет ап-пли-ка-ту 0, а зна-чит, она лежит в плос-ко-сти Oxy.

Точка C(0;2;0) имеет абс-цис-су и ап-пли-ка-ту 0 - не от-ме-ча-ем. Ор-ди-на-та равна 2, зна-чит точка C лежит толь-ко на оси Oy, ко-то-рая яв-ля-ет-ся пе-ре-се-че-ни-ем плос-ко-стей Oxy и Oyz.

Чтобы от-ло-жить точку D(-4;0;3) про-дол-жа-ем ось Ox назад за на-ча-ло ко-ор-ди-нат до точки -4. Те-перь вос-ста-нав-ли-ва-ем из этой точки пер-пен-ди-ку-ляр - пря-мую, па-рал-лель-ную оси Oz до пе-ре-се-че-ния с пря-мой, па-рал-лель-ной оси Ox и про-хо-дя-щей через зна-че-ние 3 на оси Oz. По-лу-ча-ем току D(-4;0;3). Так как ор-ди-на-та точки равна 0, зна-чит точка D лежит в плос-ко-сти Oxz.

Сле-ду-ю-щая точка E(0;5;-3). Ор-ди-на-та точки 5, ап-пли-ка-та -3, про-во-дим пря-мые про-хо-дя-щие через эти зна-че-ния на со-от-вет-ству-ю-щих осях, и на их пе-ре-се-че-нии по-лу-ча-ем точку E(0;5;-3). Эта точка имеет первую ко-ор-ди-на-ту 0, зна-чит она лежит в плос-ко-сти Oyz.

2. Координаты вектора

На-чер-тим пря-мо-уголь-ную си-сте-му ко-ор-ди-нат в про-стран-стве Oxyz. За-да-дим в про-стран-стве пря-мо-уголь-ную си-сте-му ко-ор-ди-нат Oxyz. На каж-дой из по-ло-жи-тель-ных по-лу-осей от-ло-жим от на-ча-ла ко-ор-ди-нат еди-нич-ный век-тор, т. е. век-тор, длина ко-то-ро-го равна еди-ни-це. Обо-зна-чим еди-нич-ный век-тор оси абс-цисс, еди-нич-ный век-тор оси ор-ди-нат , и еди-нич-ный век-тор оси ап-пли-кат (см. рис. 1). Эти век-то-ры со-на-прав-ле-ны с на-прав-ле-ни-я-ми осей, имеют еди-нич-ную длину и ор-то-го-наль-ны - по-пар-но пер-пен-ди-ку-ляр-ны. Такие век-то-ра на-зы-ва-ют ко-ор-ди-нат-ны-ми век-то-ра-ми или ба-зи-сом.

Рис. 1. Раз-ло-же-ние век-то-ра по трем ко-ор-ди-нат-ным век-то-рам

Возь-мем век-тор , по-ме-стим его в на-ча-ло ко-ор-ди-нат, и раз-ло-жим этот век-тор по трем неком-пла-нар-ным - ле-жа-щим в раз-ных плос-ко-стях - век-то-рам. Для этого опу-стим про-ек-цию точки M на плос-кость Oxy, и най-дем ко-ор-ди-на-ты век-то-ров , и . По-лу-ча-ем: . Рас-смот-рим по от-дель-но-сти каж-дый из этих век-то-ров. Век-тор лежит на оси Ox, зна-чит, со-глас-но свой-ству умно-же-ния век-то-ра на число, его можно пред-ста-вить как ка-кое-то число x умно-жен-ное на ко-ор-ди-нат-ный век-тор . , а длина век-то-ра ровно в x раз боль-ше длины . Так же по-сту-пим и с век-то-ра-ми и , и по-лу-ча-ем раз-ло-же-ние век-то-ра по трем ко-ор-ди-нат-ным век-то-рам:

Ко-эф-фи-ци-ен-ты этого раз-ло-же-ния x, y и z на-зы-ва-ют-ся ко-ор-ди-на-та-ми век-то-ра в про-стран-стве.

Рас-смот-рим пра-ви-ла, ко-то-рые поз-во-ля-ют по ко-ор-ди-на-там дан-ных век-то-ров найти ко-ор-ди-на-ты их суммы и раз-но-сти, а также ко-ор-ди-на-ты про-из-ве-де-ния дан-но-го век-то-ра на дан-ное число.

1) Сло-же-ние:

2) Вы-чи-та-ние:

3) Умно-же-ние на число: ,

Век-тор, на-ча-ло ко-то-ро-го сов-па-да-ет с на-ча-лом ко-ор-ди-нат, на-зы-ва-ет-ся ра-ди-ус -век-то-ром. (Рис. 2). Век-тор - ра-ди-ус-век-тор, где x, y и z - это ко-эф-фи-ци-ен-ты раз-ло-же-ния этого век-то-ра по ко-ор-ди-нат-ным век-то-рам , , . В дан-ном слу-чае x - это пер-вая ко-ор-ди-на-та точки A на оси Ox, y - ко-ор-ди-на-та точки B на оси Oy, z - ко-ор-ди-на-та точки C на оси Oz. По ри-сун-ку видно, что ко-ор-ди-на-ты ра-ди-ус-век-то-ра од-но-вре-мен-но яв-ля-ют-ся ко-ор-ди-на-та-ми точки М.

Возь-мем точку A(x1;y1;z1) и точку B(x2;y2;z2) (см. рис. 3). Пред-ста-вим век-тор как раз-ность век-то-ров и по свой-ству век-то-ров. При-чем, и - ра-ди-ус-век-то-ры, и их ко-ор-ди-на-ты сов-па-да-ют с ко-ор-ди-на-та-ми кон-цов этих век-то-ров. Тогда мы можем пред-ста-вить ко-ор-ди-на-ты век-то-ра как раз-ность со-от-вет-ству-ю-щих ко-ор-ди-нат век-то-ров и : . Таким об-ра-зом, ко-ор-ди-на-ты век-то-ра мы можем вы-ра-зить через ко-ор-ди-на-ты конца и на-ча-ла век-то-ра.

Рас-смот-рим при-ме-ры, ил-лю-стри-ру-ю-щие свой-ства век-то-ров и их вы-ра-же-ние через ко-ор-ди-на-ты. Возь-мем век-то-ры , , . Нас спра-ши-ва-ют век-тор . В дан-ном слу-чае найти это зна-чит найти ко-ор-ди-на-ты век-то-ра, ко-то-рые пол-но-стью его опре-де-ля-ют. Под-став-ля-ем в вы-ра-же-ние вме-сто век-то-ров со-от-вет-ствен-но их ко-ор-ди-на-ты. По-лу-ча-ем:

Те-перь умно-жа-ем число 3 на каж-дую ко-ор-ди-на-ту в скоб-ках, и то же самое де-ла-ем с 2:

У нас по-лу-чи-лась сумма трех век-то-ров, скла-ды-ва-ем их по изу-чен-но-му выше свой-ству:

Ответ:

При-мер №2.

Дано: Тре-уголь-ная пи-ра-ми-да AOBC (см. рис. 4). Плос-ко-сти AOB, AOC и OCB - по-пар-но пер-пен-ди-ку-ляр-ны. OA=3, OB=7, OC=4; M - сер.AC; N - сер.OC; P - сер. CB.

Найти: ,,,,,,,.

Ре-ше-ние: Вве-дем пря-мо-уголь-ную си-сте-му ко-ор-ди-нат Oxyz с на-ча-лом от-сче-та в точке O. По усло-вию обо-зна-ча-ем точки A, B и C на осях и се-ре-ди-ны ребер пи-ра-ми-ды - M, P и N. По ри-сун-ку на-хо-дим ко-ор-ди-на-ты вер-шин пи-ра-ми-ды: A(3;0;0), B(0;7;0), C(0;0;4).

Прямоугольная система координат на плоскости задаётся двумя взаимно перпендикулярными прямыми. Прямые называют осями координат (или координатными осями). Точку пересечения этих прямых называют началом отсчёта и обозначают буквой O.

Обычно одна из прямых горизонтальна, другая — вертикальна. Горизонтальную прямую обозначают как ось x (или Ox) и называют осью абсцисс, вертикальную — ось y (Oy), называют осью ординат. Всю систему координат обозначают xOy.

Точка O разбивает каждую из осей на две полуоси, одну из из которых считают положительной (её обозначают стрелкой), другую — отрицательной.

Каждой точке F плоскости ставится в соответствие пара чисел (x;y) — её координаты.

Координата x называется абсциссой. Она равна Ox, взятому с соответствующим знаком.

Координата y называется ординатой и равна расстоянию от точки F до оси Oy (с соответствующим знаком).

Расстояния до осей обычно (но не всегда) измеряют одной и той же единицей длины.

Точки, расположенные справа от оси y, имеют положительные абсциссы. У точек, которые лежат левее оси ординат, абсциссы отрицательны. Для любой точки, лежащей на оси Oy, её координата x равна нулю.

Точки с положительной ординатой лежат выше оси x, с отрицательной — ниже. Если точка лежит на оси Ox, её координата y равна нулю.

Координатные оси разбивают плоскость на четыре части, которые называют координатными четвертями (или координатными углами или квадрантами).

1 координатная четверть расположена в правом верхнем углу координатной плоскости xOy. Обе координаты точек, расположенных в I четверти, положительны.

Переход от одной четверти к другой ведётся против часовой стрелки.

2 координатная четверть находится в левом верхнем углу. Точки, лежащие во II четверти, имеют отрицательную абсциссу и положительную ординату.

3 координатная четверть лежит в левом нижнем квадранте плоскости xOy. Обе координаты точек, принадлежащей III координатному углу, отрицательны.

4 координатная четверть — это правый нижний угол координатной плоскости. Любая точка из IV четверти имеет положительную первую координату и отрицательную вторую.

Пример расположения точек в прямоугольной системе координат:

Прямоугольная (другие названия — плоская, двухмерная) система координат, названная по имени французского ученого Декарта (1596—1650) «декартовой системой координат на плоскости», образуется пересечением на плоскости под прямым углом (перпендикулярно) двух числовых осей так, что положительная полуось одной направлена вправо (ось x, или ось абсцисс), а второй — вверх (ось y, или ось ординат).

Точка пересечения осей совпадает с точкой 0 каждой из них и называется началом координат.

Для каждой из осей выбирается произвольный масштаб (единичный отрезок длины). Каждой точке плоскости соответствует одна пара чисел, названная координатами этой точки на плоскости. И наоборот, любой упорядоченной паре чисел соответствует одна точка плоскости, для которой эти числа являются координатами.

Первая координата точки называется абсциссой этой точки, а вторая координата — ординатой.

Вся плоскость координат делится на 4 квадранта (четверти). Квадранты расположены от первого до четвертого против часовой стрелки (см. рис.).

Чтобы определить координаты точки, нужно найти ее расстояние до оси абсцисс и оси ординат. Так как расстояние (кратчайшее) определяется по перпендикуляру, то из точки опускаются два перпендикуляра (вспомогательные линии на плоскости координат) на оси так, что точка их пересечения — это и есть место заданной точки в плоскости координат. Точки пересечения перпендикуляров с осями называются проекциями точки на оси координат.

Первый квадрант ограничен положительными полуосями абсцисс и ординат. Следовательно, координаты точек в этой четверти плоскости будут положительными
(знаки « + » и

Например, точка M (2; 4) на рисунке вверху.

Второй квадрант ограничен отрицательной полуосью абсцисс и положительной полуосью ординат. Следовательно, координаты точек по оси абсцисс будут отрицательными (знак «-»), а по оси ординат — положительными (знак « + »).

Например, точка C (-4; 1) на рисунке выше.

Третий квадрант ограничен отрицательной полуосью абсцисс и отрицательной полуосью ординат. Следовательно, координаты точек по оси абсцисс и оси ординат будут отрицательными (знаки «-» и «-»).

Например, точка D (-6; -2) на рисунке выше.

Четвертый квадрант ограничен положительной полуосью абсцисс и отрицательной полуосью ординат. Следовательно, координаты точек по оси абсцисс будут положительными (знак «+»). а по оси ординат - отрицательными (знак «-»).

Например, точка R (3; -3) на рисунке выше.

Построение точки по ее заданным координатам

    первую координату точки найдем на оси абсцисс и проведем через нее вспомогательную линию — перпендикуляр;

    вторую координату точки найдем на оси ординат и проведем через нее вспомогательную линию - перпендикуляр;

    точка пересечения двух перпендикуляров (вспомогательных линий) и будет соответствовать точке с заданными координатами.