Прямое и непрямое поражение током диэлектрики. Поражение электрическим током

Электротравма – этотравма, полученная вследствие поражения человека электрическим током или молнией .

Опасными для человека и приводящими к электротравме считаются сила тока превышающая 0,15Ампер, а также переменное и постоянное напряжение больше 36 Вольт. Последствия электротравмы могут быть самыми разными: удар током может вызвать остановку сердца, кровообращения, дыхания, потерю сознания. Почти всегда электротравма сопровождается повреждениями кожных покровов, слизистых оболочек и костей на месте входа и выхода электрического разряда, приводит к нарушению деятельности центральной и периферической нервной системы.

Знак тока – (син. электрометка) изменения эпидермиса или эпителия при поражении электрическим током. Повреждение тканей (кожи или слизистых оболочек) в месте контакта с проводником электрического тока значительной силы и (или) напряжения характеризуется сухим некрозом тканей (вплоть до обугливания) и импрегнацией их металлом проводника. Впервые описаны австрийским ученым St. Jellinek’ом. Форма чаще всего круглая или овальная, но может быть и линейной; цвет – светлее окружающей кожи, иногда серовато-белый или просто белый, по консистенции напоминают мозоли. Иногда по краям имеется валикообразное возвышение, вследствие чего середина углубленна. Знаки тока безболезненны, отсутствует воспалительная реакция. Иногда знаки тока могут повторять форму проводника. Атипичные знаки тока могут иметь вид ран с обожженными краями, ссадин, ожогов.

В окружности знаков тока наблюдается явление эпидермиолиза, чаще на месте вхождения тока, реже – на месте выхода тока.

Знаки тока устойчивы к действию внешних факторов, гниения. Длительное пребывание типичных знаков тока в водной среде почти не изменяло их вид. Макроскопически знаки тока можно обнаруживать при гнилостных изменениях тканей в сроки до 7-10 месяцев.

Микроскопическая знаков тока зависит от локализации их на теле. Происходят изменения рогового слоя. Он приобретает спонгиозный вид или может быть «вспученным» с образованием полостей различной величины (от 10 до 100 мкм) и формы (округлые, овальные, угловатые). Они часто объединены в группы, разделенные между собой тонкими перемычками.

Гребешковые выступы эпидермиса утрачивают свою округлость. Рельеф зернистого слоя выражен отчетливо. Ядра зернистых клеток несколько уплощаются и располагаются параллельно поверхности кожи. Ядра клеток базального и частично шиповатого слоев становятся гиперхромными, располагаются перпендикулярно или под углом к поверхности кожи, образуя фигуры «завихрения», напоминающие метелки, рыбьи хвосты, частокол.

Петля тока-

В зависимости от характера развивающихся нарушений принято разделять поражения электрическим током на местные (электроожоги) и общие (электротравма) симптомы. Эти нарушения очень часто сочетаются.

Местные симптомы

Возникающие при поражении током знаки тока характеризуются следующими признаками.

1. Отмечаются обычно небольшие (диаметром до 2-3 см) участки сухого некроза округлой или линейной формы, а иногда в виде отпечатка проводника. В центре - втяжение, края приподняты. Волосы скручены.

2. Гиперемия вокруг практически отсутствует.

3. Нет болевых ощущений.

4. Может иметь место металлизация пораженных участков из-за разбрызгивания мелких частиц проводника.

Электроожоги почти всегда глубокие. Отторжение продолжается долго как из-за глубины поражения, так и вследствие нарушения кровоснабжения в результате спазма и тромбоза кровеносных сосудов.

Осложнением электроожогов является вторичный некроз тканей из-за тромбоза магистральных сосудов вплоть до развития гангрены.

При поражении молнией образуются знаки молнии - древовидные разветвления и полосы гиперемии на коже (следствие поражения стенок кожных сосудов - паралич и стаз). Они исчезают через несколько дней.

Общие симптомы

Клиническая картина обусловлена тяжестью электротравмы. Превалируют изменения со стороны сердечно-сосудистой, дыхательной и центральной нервной системы.

Частота сердечных сокращений обычно уменьшена (брадикардия), пульс напряжен, тоны сердца глухие, возможна аритмия. В тяжелых случаях развивается фибрилляция сердца с прекращением кровообращения.

Спастическое поражение мышц гортани и дыхательной мускулатуры приводит к нарушению ритмичности и глубины дыхания и к развитию асфиксии.

Нарушения центральной нервной системы проявляются в разбитости, головокружении, нарушении зрения, усталости, а иногда и в возбуждении. Характерно наличие парезов, параличей и невритов. При судорожном сокращении мышц возможны их разрывы, а также компрессионные и отрывные переломы костей. При тяжелых поражениях отмечается потеря сознания. В позднем периоде возможно развитие недостаточности функции печени и почек.

Причиной внезапной смерти при поражении электрическим током являются фибрилляция желудочков и остановка дыхания. Смерть может наступить не сразу, а через несколько часов после травмы.

В некоторых случаях развивается так называемая «мнимая смерть» - состояние, при котором отсутствует сознание, сокращения сердца редкие и определяются с трудом, дыхание поверхностное, редкое, - то есть наблюдается крайнее угнетение основных жизненно важных функций. Несмотря на внешнее сходство, такое состояние не является клинической смертью, а наблюдаемые симптомы могут подвергнуться обратному развитию даже через довольно длительный промежуток времени. Поэтому при электротравме принято оказывать помощь (в том числе и реанимационные мероприятия) вплоть до появления трупных пятен и трупного окоченения.

Осложнения электротравмы

Электрический ожог может повредить нервную систему, сердце, кровеносные сосуды и почки. Повреждение органа может быть вызвано непосредственно током или, если разрушены клетки, прерыванием кровотока. Более того, отеки тканей еще больше нарушают кровоток.

При поражении сердца, мозга, спинного мозга нарушается сердечный ритм, что может повлечь за собой остановку сердца.

При поражении центральной нервной системы возникают спазмы, кома, остановка дыхания.

При повреждении спинного мозга человек испытывает крайнюю слабость, у него даже может развиться паралич.

Массивное нарушение притока крови к мышцам высвобождает большие количества гемоглобина и миоглобина. Они блокируют тончайшие протоки в почках, разрушая их. Это может вызвать отказ почек.

У пострадавшего возможны массированные кровотечения, камни в печени и катаракта.

Электротравма. Дать определение понятиям: прямое и непрямое поражение током, диэлектрики. Правила приближения к пострадавшему находящегося под воздействием электрического тока. Последовательность действий при оказании медицинской помощи.

Под прямым поражением электрическим током понимается полное прикосновение к оголенным проводам находящимся под рабочим напряжением. В свою очередь прямое прикосновение бывает нескольких видов:

Одновременное касание фазы провода и нулевой жилы.

Соприкосновение с двумя различными фазами, двумя руками.

В 2-х проводной электросети касание только одного провода.

Под косвенным поражением электрическим током понимается несознательное прикосновение к электроприбору находящимся под напряжением. Такая ситуация может произойти, если кабели люстры с торчащими с потолка кабелями прикрутили хорошо, а изолировали абы как. Вполне возможен смертельный удар электрическим током, когда кто-то будет протирать люстру от пыли.

Диэлектрик (изолятор) - вещество, практически не проводящее электрический ток. Концентрация свободных носителей заряда в диэлектрике не превышает 10 8 см −3 . Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле

Прикосновение к токоведущим частям, находящимся под напряжением, вызывает в большинстве случаев непроизвольное судорожное сокращение мышц и общее возбуждение, которое может привести к потере сознания, нарушению или полному прекращению деятельности органов дыхания и кровообращения. Если пострадавший держит провод руками, его пальцы так сильно сжимаются, что высвободить провод становится невозможно. Поэтому первым действием оказывающего помощь должно быть немедленное отключение участка электросети, которого касается пострадавший, выключателем, рубильником, путем вывертывания пробок на щитке. Если невозможно быстро отключить электроустановку из-за удаленности отключающих аппаратов, то можно перерубить провода (каждый в отдельности) любым режущим инструментов с рукояткой из изолирующего материала. Можно воспользоваться инструментом и с металлической рукояткой, предварительно обернув ее сухой тканью.

В случае если пострадавший находится на высоте, отключение установки может вызвать его падение; нужно принять меры, предупреждающие падение.

При отключении электроустановки может погаснуть свет. В связи с этим нужно позаботиться об освещении из другого источника (фонарь, факел, свечи и т.п.).

Оказывающий помощь не должен прикасаться к пострадавшему без надлежащих мер предосторожности, так как последний в данном случае является проводником электрического тока.

Для отделения пострадавшего от токоведущих частей или провода напряжением до 1000 В следует воспользоваться сухой одеждой, канатом, палкой, доской или каким-либо другим сухим предметом, не проводящим электрический ток. Для этих целей нельзя использовать металлические и мокрые предметы. Можно также взяться за одежду пострадавшего (если она сухая), например за полы пиджака или пальто, стараясь при этом не прикасаться к окружающим металлическим предметам и частям тела, не прикрытым одеждой. Оттаскивая пострадавшего за ноги, не следует касаться его обуви, не изолировав свои руки, так как обувь может быть сырой и проводить электрический ток.

Для того чтобы изолировать себя, оказывающий помощь (особенно если необходимо коснуться тела, пораженного током, не прикрытого одеждой) должен надеть диэлектрические перчатки или обмотать себе руки шарфом, использовать прорезиненную или просто сухую ткань; можно встать на сухую доску или другую не проводящую электрический ток подстилку, сверток одежды и т.п.

При отделении пострадавшего от токоведущих элементов рекомендуется действовать по возможности одной рукой. Для изолирования пострадавшего от земли или токоведущих частей напряжением выше 1000 В необходимо обратиться к специалистам, так как перечисленных мер безопасности в данном случае недостаточно.

ВОПРОСЫ ПО ЭЛЕКТРОБЕЗОПАСНОСТИ

    Действие электрического тока на организм человека.

    Виды поражения электрическим током.

    Причины смерти от электрического тока.

    Основные факторы, влияющие на исход поражения током.

    Основные меры защиты от поражения электрическим током.

    Условия и основные причины поражения током.

    Опасность однофазного и двухфазного прикосновения в сетях с изолированной и заземлённой нейтралью.

    Факторы, влияющие на опасность поражения током при прикосновении человека к токоведущим частям, находящимся под напряжением.

    Основные причины несчастных случаев от электрического тока.

    Классификация помещений по опасности поражения электрическим током.

    Меры по обеспечению недоступности токоведущих частей для случайного прикосновения.

    Выбор типа электрооборудования и конструкции электроустановок с учетом класса помещений по опасности поражения током.

    Контроль состояния изоляции электроустановок.

    Ограждения токоведущих частей.

    Сигнализация и блокировки в электроустановках.

    Плакаты и знаки безопасности в электроустановках.

    Обеспечение недоступности токоведущих частей, находящихся под напряжения для случайного прикосновения.

    Защитное разделение сети.

    Устранение опасности поражения током при появлении напряжения на корпусах, кожухах и других нетоковедущих частях электрооборудования.

    Защитное заземление: определение, назначение, принцип действия, область использования.

    Зануление: определение, назначение, принцип действия, область использования.

    Защитное отключение (УЗО): определение, назначение, принцип действия, область использования.

    Выравнивание потенциала.

    Двойная изоляция.

    Применение малого напряжения.

    Защитные средства, применяемые в электроустановках.

    Изолирующие защитные средства.

    Ограждающие и предохранительные защитные средства.

    Первая помощь человеку, пораженному электрическим током.

    Организационные мероприятия по обеспечению электробезопасности.

    Порядок оказания первой помощи пострадавшему при поражении электрическим током.

    Мероприятия по защите от поражения электрическим током.

    Статическое электричество в промышленности и защита от него.

    Факторы, влияющие на интенсивность электризации.

    Опасность, создаваемая статическим электричеством и его нежелательные проявления.

    Особенности электризации твёрдых сыпучих и жидких диэлектриков.

    Способы измерения и приборы для оценки параметров, характеризующих статическую электризацию.

    Основные параметры статической электризации.

    Условия, определяющие возможность пожаров и взрывов, причиной которых является статическое электричество.

    Технологические помехи, возникающие в результате действия статического электричества.

    Физиологическое воздействие статического электричества на организм человека.

    Способы защиты от статического электричества.

    Нейтрализация зарядов на поверхности наэлектризованного диэлектрика.

    Индукционные нейтрализаторы статического электричества (ИНСЭ).

    Высоковольтные нейтрализаторы статического электричества (ВНСЭ).

    Радиоактивные нейтрализаторы статического электричества (РНСЭ).

    Комбинированные нейтрализаторы статического электричества (КНСЭ).

    Аэродинамические нейтрализаторы статического электричества (АНСЭ).

    Комплекс мероприятий и устройств, предназначенных для обеспечения безопасности при воздействиях молнии.

    Виды воздействия разрядов молнии.

    Конструкции молниеотводов (зоны защиты).

    Основные требования по защите зданий и сооружений от воздействия молнии.

    Основные параметры молнии.

    Электростатическая индукция при воздействии молнии и меры защиты.

    Электромагнитная индукция при воздействии молнии и меры защиты.

    Занос высоких электрических потенциалов при воздействии молнии и меры защиты.

    Конструктивные параметры молниеотводов.

1. Действие электрического тока на организм человека

Электрический ток, проходя через организм человека, оказывает биологическое, электролитическое, тепловое и механическое действие.

Биологическое действие тока проявляется в раздражении и возбуждении тканей и органов. Вследствие этого наблюдаются судороги скелетных мышц, которые могут привести к остановке дыхания, отрывным переломам и вывихам конечностей, спазму голосовых связок.

Электролитическое действие тока проявляется в электролизе (разложении) жидкостей, в том числе и крови, а также существенно изменяет функциональное состояние клеток.

Тепловое действие электрического тока приводит к ожогам кожного покрова, а также гибели подкожных тканей, вплоть до обугливания. Механическое действие тока проявляется в расслоении тканей и даже отрывах частей тела.

2. Виды поражения электрическим током.

Различают два основных вида поражения организма: электрические травмы и электрические удары. Часто оба вида поражения сопутствуют друг другу. Тем не менее, они различны и должны рассматриваться раздельно.

Электрические травмы – это чётко выраженные местные нарушения целостности тканей организма, вызванные воздействием электрического тока или электрической дуги. Обычно это поверхностные повреждения, то есть поражения кожи, а иногда других мягких тканей, а также связок и костей.

Опасность электрических травм и сложность их лечения обуславливаются характером и степенью повреждения тканей, а также реакцией организма на это повреждение. Обычно травмы излечиваются, и работоспособность пострадавшего восстанавливается полностью или частично.

Иногда (обычно при тяжёлых ожогах) человек погибает. В таких случаях непосредственной причиной смерти является не электрический ток, а местное повреждение организма, вызванное током.

Характерные виды электротравм - электрические ожоги, электрические знаки, металлизация кожи, электроофтальмия и механические повреждения.

Электрические ожоги - наиболее распространенные электротравмы. Они составляют 60-65 %, причем 1/3 их сопровождается другими электротравмами.

Различают ожоги: токовый (контактный) и дуговой.

Контактные электроожоги, т.е. поражения тканей в местах входа, выхода и на пути движения электротока возникают в результате контакта человека с токоведущей частью. Эти ожоги возникают при эксплуатации электроустановок относительно небольшого напряжения (не выше 1 -2 кВ), они сравнительно легкие.

Дуговой ожог обусловлен воздействием электрической дуги, создающей высокую температуру. Дуговой ожог возникает при работе в электроустановках различных напряжений, часто является следствием случайных коротких замыканий в установках от 1000 В до 10 кВ или ошибочных операций персонала. Поражение возникает от перемены электрической дуги или загоревшейся от неё одежды.

Могут быть также комбинированные поражения (контактный электроожог и термический ожог от пламени электрической дуги или загоревшейся одежды, злектроожог в сочетании с различными механическими повреждениями, электроожог одновременно с термическим ожогом и механической травмой).

Электрические знаки представляют собой четко очерченные пятна серого или бледно-желтого цвета на поверхности кожи человека, подвергнувшегося действию тока. Знаки имеют круглую или овальную форму с углублением в центре. Они бывают в виде царапин, небольших ран или ушибов, бородавок, кровоизлияний в коже и мозолей. Иногда их форма соответствует форме токоведущей части, к которой прикоснулся пострадавший, а также напоминает форму морщин.

В большинстве случаев электрические знаки безболезненны, и их лечение заканчивается благополучно: с течением времени верхний слой кожи и пораженное место приобретают первоначальный цвет, эластичность и чувствительность, Знаки возникают примерно у 20 % пострадавших от тока.

Металлизация кожи - проникновение в ее верхние слои частичек металла, расплавившегося под действием электрической дуги. Это возможно при коротких замыканиях, отключениях разъединителей и рубильников под нагрузкой и т.п.

Пораженный участок имеет шероховатую поверхность, окраска которой определяется цветом соединений металла, попавшего под кожу: зеленая - при контакте с медью, серая - с алюминием, сине-зеленая - с латунью, желто-серая - со свинцом. Обычно с течением времени больная кожа сходит и поражённый участок приобретает нормальный вид. Вместе с тем исчезают и все болезненные ощущения, связанные с этой травмой.

Металлизация кожи наблюдается примерно у каждого десятого из пострадавших. Причём в большинстве случаев одновременно с металлизацией происходит ожог электрической дугой, который почти всегда вызывает более тяжёлые поражения.

Электроофтальмия – воспаление наружных оболочек глаз в результате воздействия мощного потока ультрафиолетовых лучей, вызывающих в клетках организма химические изменения. Такое облучение возможно при наличии электрической дуги (например, при коротком замыкании), которая является источником интенсивного излучения не только видимого света, но и ультрафиолетовых и инфракрасных лучей. Электроофтальмия возникает сравнительно редко (у 1-2 % пострадавших), чаще всего при проведении электросварочных работ.

Механические повреждения являются следствием резких, непроизвольных судорожных сокращений мышц под действием тока, проходящего через человека. В результате могут произойти разрывы кожи, кровеносных сосудов и нервной ткани, а также вывихи суставов и даже переломы костей. Эти повреждения являются, как правило, серьёзными травмами, требующими длительного лечения. К счастью они возникают редко – не более чем у 3 % пострадавших от тока.

Электрический удар – это возбуждение живых тканей электрическим током, проходящим через организм, сопровождающееся непроизвольными судорожными сокращениями мышц.

В зависимости от исхода отрицательного воздействия тока на организм электрические удары могут быть условно разделены н

3. Причины смерти от э. тока. Причинами смерти от электрического тока могут быть прекращение дыхания, прекращение работы сердца и электрический шок. Возможно также одновременное действие всех трех причин.

    Прекращение работы сердца – наиболее опасно; является следствием воздействия тока на мышцу сердца, т.е. прохождение тока в области сердца или рефлекторно через центральную нервную систему, когда путь тока лежит вне этой области. В обоих случаях может произойти остановка сердца или наступить его фибрилляция. Фибрилляция сердца - хаотические разновременные сокращения волокон сердечной мышцы (фибрилл), при которых сердце не в состоянии гнать кровь по сосудам.

    Прекращение дыхания – может быть вызвано прямым или рефлекторным воздействием тока на мышцы грудной клетки, участвующие в процессе дыхания.

    Электрический шок – реакция организма в ответ на чрезмерное раздражение электрическим током, сопровождающаяся глубокими расстройствами кровообращения, дыхания, обмена веществ, происходит угнетение функций организма. Шоковое состояние длится от нескольких десятков минут до суток. После этого может наступить или гибель человека в результате полного угасания жизненно важных функций, или выздоровление как результат своевременного активного лечебного вмешательства.

4. Основные факторы, влияющие на исход поражения э. током. V Сила тока. 1,5 мА – порог ощущения, 15мА – неотпускающий ток, 50мА – ток фибрилляции, 100мА – смертельный ток. Частота переменного тока. 50 Гц – самая опасная. Напряжение. Не существует безопасного напряжения. Существует низкое напряжение <50В. Сопротивление тела. Внешнее, максимум – 30-40 кОм. Обычно меньше, легко снижается. Внутреннее – 1 кОм. Путь тока. Петли: верхняя – рука-рука, нижняя – нога-нога, полная – рука-нога, косая – рука-нога накрест. Время воздействия. Безопасным считается 0,1 с. Факторы внешней/внутренней среды. Температура, влажность, усилие воли и т.д.

Непосредственно соприкосновение с токоведущими частями установок, находящимися под напряжением, связано с опасностью поражения током. При этом степень опасности и возможность поражения электрическим током зависят от того, каким образом произошло прикосновение человека к проводникам, находящимся под напряжением.

Возможны два случая прикосновений:

1) к двум линейным проводам одновременно;

2) к одному линейному проводу.

Двухфазное прикосновение. Прикосновение к двум линейным проводам (двум фазам) одновременно (рис. 6, а) является чрезвычайно опасным, поскольку к телу человека в этом случае прикладывается наибольшее возможное в данной сети напряжение — линейное. Ток, протекающий через тело человека, равен

где I ч — ток, протекающий через тело человека, в А;

U л — линейное напряжение установки в В;

U ф — фазовое напряжение в В;

R ч — сопротивление человека в Ом.

В сети с линейным напряжением 380 В и при сопротивлении тела человека 1000 Ом через человека будет проходить ток, равный I ч =380/1000= 0,38 А

Такой ток является, безусловно, опасным для жизни человека.

Рис. 6. Схема пути электрического тока :

а— при двухфазном прикосновении; б — при однофазном прикосновении в системе с заземленной нейтралью; в — при однофазном прикосновении в системе с изолированной нейтралью; г — при однофазном прикосновении в системе при наличии емкости

Случаи двухфазного прикосновения человека происходят очень редко. Достаточно сказать, что из всех случаев электропоражений с тяжелым исходом на долю одновременных прикосновений к двум фазам приходится от 3 до 10%.

Однофазное прикосновение. В 90—97% случаев, повлекших тяжелые электропоражения, имело место прикосновение к одной фазе,. Однако прикосновение к одной фазе является значительно менее опасным, чем двухфазное прикосновение. Объясняется это тем, что при однофазном прикосновении напряжение, под которым оказывается человек, не превышает фазного, т. е. меньше линейного в =1,73 раза. Соответственно меньше оказывается и ток, протекающий через тело человека. Кроме того, на величину этого тока влияет также режим нейтрали источника тока, сопротивление пола, на котором стоит человек, сопротивление его обуви и некоторые другие факторы.

Нейтрали генераторов и трансформаторов могут быть выполнены либо глухозаземленными, либо изолированными от земли. Глухозаземленной называется нейтраль генератора или трансформатора, присоединенная к заземляющему устройству непосредственно или через малое сопротивление (например, трансформаторы тока и т. д.). Изолированной называется нейтраль, не присоединенная к заземляющему устройству или присоединенная к нему через большое сопротивление (например, компенсационные катушки, трансформаторы напряжения и т. д.).

На рис. 6, б и в показаны схемы электрических сетей с заземленной и изолированной нейтралью.

Однофазное прикосновение в сети с глухозаземленной нейтралью. При таком прикосновении (рис. 6, б) ток, протекающий через тело человека, определяется фазовым напряжением сети , сопротивлением тела R ч, сопротивлением R п пола и почвы на участке от ступней ног до заземляющего устройства, сопротивлением обуви R o б и сопротивлением заземления нейтрали источника тока R 0:

Рассмотрим наиболее неблагоприятный случай. Предположим, что человек, прикоснувшийся к одной фазе, стоит на сыром грунте или на проводящем (металлическом или земляном) полу; его обувь также проводящая — сырая или имеет металлические гвозди. Следовательно, можно принять R п = 0 и R об = 0.

Поскольку сопротивление заземления нейтрали R 0 , как правило, равно 4 Ом, им без ущерба для точности подсчета можно пренебречь. В результате формула примет вид .

При линейном напряжении U л = 380 В через тело человека будет протекать ток, равный

Такой ток опасен для жизни.

Если же человек стоит на изолирующем полу (например, из метлахской плитки) в непроводящей обуви (например, резиновой), то, принимая R п = 120 000 Ом и R об = 100 000 Ом, получим

Такой ток безопасен для человека.

В действительности незагрязненные полы из метлахской плитки и резиновая обувь обладают значительно большим сопротивлением по сравнению с принятыми нами, т. е. ток, протекающий через человека, будет еще меньше.

Однофазное прикосновение в сети с изолированной нейтралью. При однофазном прикосновении человека в сети, имеющей изолированную нейтральную точку (рис. 6, б), ток проходит от места контакта через тело человека, затем через обувь, пол, землю и несовершенную изоляцию проводов к двум другим фазам и далее к источнику электроэнергии. Величина тока, проходящего через тело человека, в этом случае равна

где R из — сопротивление изоляции одной фазы сети относительно земли в Ом.

В наиболее неблагоприятном случае, когда человек стоит на проводящем полу и имеет проводящую обувь, т. е. при R п = 0 и R об = 0, формула значительно упростится:

При U л = 380 В и R из = 500 000 Ом получим

Этот ток значительно меньше тока (0,22 А), вычисленного нами для случая однофазного прикосновения при аналогичных условиях, но в сети с заземленной нейтралью. Если же принять R п = 120 000 Ом и R = 100 000 Ом, то ток будет еще меньше:

Следовательно, в сети с изолированной нейтралью условия безопасности находятся в прямой зависимости не только от сопротивления пола и обуви, но и от сопротивления изоляции проводов относительно земли: чем лучше изоляция, тем меньше сила тока, протекающего через человека. В сети с заземленной нейтралью положительная роль изоляции проводов практически полностью утрачена.

Таким образом, при прочих равных условиях однофазное прикосновение человека в сети с изолированной нейтралью менее опасно, чем в сети с заземленной нейтралью, и, следовательно, система с изолированной нейтралью при нормальном состоянии изоляции менее опасна для человека, чем система с глухим заземлением нейтрали. Однако в линии такой системы может длительное время существовать незамеченное персоналом замыкание одной из фаз на землю. Если в это время человек прикоснется к проводу одной из двух других фаз, то окажется под полным линейным напряжением сети, что равносильно двухфазному прикосновению.

Общие требования обустройстве электросетей. Согласно Правилам устройства электроустановок в четырехпроводных сетях переменного тока и трехпроводных сетях постоянного тока выполняют глухое заземление нейтрали. Сети с изолированной нейтралью применяют при повышенных требованиях безопасности с обязательным устройством контроля изоляции сети и целости пробивных предохранителей силовых трансформаторов, позволяющих персоналу быстро обнаружить замыкание на землю, либо с устройством автоматического отключения участков, получивших замыкание на землю.

Опасность воздействия емкостного тока. В связи с тем, что каждая электрическая установка имеет емкость, необходимо учитывать также ее опасное влияние и возможное поражение током. Выше было сказано, что наименьшую опасность представляет однофазное прикосновение в системе с изолированной нейтралью при наличии качественной изоляции фаз. Однако даже в случае идеальной изоляции поражение током возможно и зависит от величины емкостного тока.

Емкость тока зависит от конструкции сети (воздушная или кабельная), напряжения и сечения проводов. При равных условиях (одинаково высоком напряжении, например, в 10 кВ) емкость жилы подземного кабеля среднего сечения относительно земли значительно больше емкости одной фазы относительно земли воздушной линии (соответственно, 0,2*10 -6 Ф/км и 0,0045*10 -6 ÷ 0,005 X 10 -6 Ф/км).

Предположим, что изоляция сети находится в таком хорошем состоянии, что токами утечки через изоляцию можно пренебречь, но сеть имеет некоторую емкость по отношению к земле. Для рассматриваемого случая схема прикосновения человека к одной фазе и образования цепи движения токов утечки через емкость показана на рис. 6, г.

Общее выражение для емкостного тока, протекающего через тело человека, будет

где jχ c — емкостное сопротивление одной фазы, выраженное в символической форме (здесь χ c = 1/(ω*C)—реактивное сопротивление емкости, где ω = 2πf— угловая частота переменного тока; f — частота тока в Гц; С—емкость фазы по отношению к земле в Ф).

Если взять модуль полного сопротивления, то ток, протекающий через тело человека:

При значительной емкости сети, которая имеет место в разветвленных и протяженных кабельных сетях, величина тока, протекающего через тело человека, может оказаться опасной для жизни. В таких случаях электрические системы с изолированной нейтралью в отношении безопасности полностью теряют преимущества перед системами с заземленной нейтралью и их следует рассматривать как равноценные. Но для сетей малой и средней протяженности однофазное прикосновение менее опасно для систем с изолированной нейтралью.

Опасность шаговых напряжений. Опасность поражения током может возникнуть вблизи места перехода тока

Рис. 7.

в землю с упавшего фазного провода. В зоне растекания токов (рис. 7) человек подвергается воздействию шаговых напряжений, т. е. напряжений, обусловленных, током замыкания на землю между точками почвы, отстоящими друг от друга в зоне растекания токов на расстоянии шага. Опасность поражения в этом случае увеличивается при сокращении расстояния между человеком и местом замыкания на землю и увеличении ширины шага.

Сила тока однофазного замыкания на землю I з может быть определена по формуле величина шагового напряжения U ш по формуле

где R 0 — сопротивление рабочего заземления нейтрали в Ом;

R p — сопротивление растеканию тока в месте замыкания фазного провода на землю в Ом;

ρ - удельное сопротивление грунта в Ом*см;

а — длина шага в см;

х — расстояние от места замыкания фазного провода до места измерения напряжения в см.

Определим величину шагового напряжения, воздействию которого подвергается стоящий на земле человек, если произошло замыкание на землю в сети напряжением 330/220 В с заземленной нейтралью. Сопротивление рабочего заземления R 0 = 4 Ом. Сопротивление растеканию тока в месте замыкания R р = 12 Ом (это соответствует наименьшему значению сопротивления, за исключением случая замыкания на металлическую конструкцию большой протяженности). Человек находится на расстоянии х = 4 м от точки замыкания. Величина шага а = 0,8 м. Удельное сопротивление, грунта растеканию тока ρ = 3*10 4 Ом*см.

Первоначально определим силу тока замыкания на землю а затем величину шагового напряжения

Параметры тока, проходящего через человека при воздействии шагового напряжения, зависят, кроме того, от сопротивлений опорной поверхности ног и обуви. Защитное действие оказывает обувь, обладающая хорошими изоляционными свойствами, например, резиновая.

Согласно требованиям нормативных документов, безопасность электроустановок обеспечивается следующими основными мерами:

  • 1) недоступностью токоведущих частей;
  • 2) надлежащей, а в отдельных случаях повышенной (двойной) изоляцией;
  • 3) заземлением или занулением корпусов электрооборудования и элементов электроустановок, могущих оказаться под напряжением;
  • 4) надежным и быстродействующим автоматическим защитным отключением;
  • 5) применением пониженных напряжений (42 В и ниже) для питания переносных токоприемников;
  • 6) защитным разделением цепей;
  • 7) блокировкой, предупредительной сигнализацией, надписями и плакатами;
  • 8) применением защитных средств и приспособлений;
  • 9) проведением планово-предупредительных ремонтов и профилактических испытаний электрооборудования, аппаратов и сетей, находящихся в эксплуатации;
  • 10) проведением ряда организационных мероприятий (специальное обучение, аттестация и переаттестация лиц электротехнического персонала, инструктажи и т.д.).

Для обеспечения электробезопасности на предприятиях мясной и молочной промышленности применяют следующие технические способы и средства защиты: защитное заземление, зануление, применение малых напряжений, контроль изоляции обмоток, средства индивидуальной защиты и предохранительные приспособления, защитные отключающие устройства.

Защитное заземление - это преднамеренное электрическое соединение с зёмлёй или её эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Оно защищает от поражения электрическим током при прикосновении к металлическим корпусам оборудования, металлическим конструкциям электроустановки, которые вследствие нарушения электрической изоляции оказываются под напряжением.

Сущность защиты заключается в том, что при замыкании ток проходит по обеим параллельным ветвям и распределяется между ними обратно пропорционально их сопротивлениям. Поскольку сопротивление цепи «человек-земля» во много раз больше сопротивления цепи «корпус-земля», сила тока, проходящего через человека, снижается.

В зависимости от места размещения заземлителя относительно заземляемого оборудования различают выносные и контурные заземляющие устройства.

Выносные заземлители располагают на некотором расстоянии от оборудования, при этом заземлённые корпуса электроустановок находятся на земле с нулевым потенциалом, а человек, касаясь корпуса, оказывается под полным напряжением заземлителя.

Контурные заземлители располагают по контуру вокруг оборудования в непосредственной близости, поэтому оборудование находится в зоне растекания тока. В этом случае при замыкании на корпус потенциал грунта на территории электроустановки (например, подстанции) приобретает значения, близкие к потенциалу заземлителя и заземленного электрооборудования, и напряжение прикосновения снижается.

Зануление - это преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением. При таком электрическом соединении, если оно надежно выполнено, всякое замыкание на корпус превращается в однофазное короткое замыкание (т.е. замыкание между фазами и нулевым проводом). При этом возникает ток такой силы, при которой обеспечивается срабатывание защиты (предохранителя или автомата) и автоматическое отключение поврежденной установки от питающей сети.

Малое напряжение - напряжение не более 42 В, применяемое в целях уменьшения опасности поражения электрическим током. Малые напряжения переменного тока получают с помощью понижающих трансформаторов. Его применяют при работе с переносным электроинструментом, при использовании переносных светильников во время монтажа, демонтажа и ремонта оборудования, а также в схемах дистанционного управления.

Изолирование рабочего места - это комплекс мероприятий по предотвращению возникновения цепи тока человек-земля и увеличению значения переходного сопротивления в этой цепи. Данная мера защиты применяется в случаях повышенной опасности поражения электрическим током и обычно в комбинации с разделительным трансформатором.

Выделяют следующие виды изоляции:

  • · рабочая - электрическая изоляция токоведущих частей электроустановки, обеспечивающая её нормальную работу и защиту от поражения электрическим током;
  • · дополнительная - электрическая изоляция, предусмотренная дополнительно к рабочей изоляции для защиты от поражения электрическим током в случае повреждения рабочей изоляции;
  • · двойная - электрическая изоляция, состоящая из рабочей и дополнительной изоляции. Двойная изоляция заключается в одном электроприёмнике двух независимых одна от другой ступеней изоляции (например, покрытие электрооборудования слоем изоляционного материала - краской, пленкой, лаком, эмалью и т.п.). Применение двойной изоляции наиболее рационально, когда в дополнение к рабочей электрической изоляции токоведущих частей корпус электроприёмника изготавливается из изолирующего материала (пластмассы, стекловолокна).

Защитное отключение - это быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении в ней опасности поражения электрическим током.

Оно должно обеспечить автоматическое отключение электроустановок при однофазном (однополюсном) прикосновении к частям, находящимся под напряжением, не допустимым для человека, и (или) при возникновении в электроустановке тока утечки (замыкания), превышающего заданные значения. электробезопасность ток помощь ожог

Защитное отключение рекомендуется в качестве основной или дополнительной меры защиты, если безопасность нельзя обеспечить при заземлении или занулении, либо если заземление или зануление трудно выполнимо, либо нецелесообразно по экономическим соображениям. Устройства (аппараты) для защитного отключения в отношении надежности действия должны удовлетворять специальным техническим требованиям.

Средства индивидуальной защиты делятся на изолирующие, вспомогательные и ограждающие.

Изолирующие защитные средства обеспечивают электрическую изоляцию человека от токоведущих частей и земли. Они подразделяются на основные (диэлектрические перчатки, инструмент с изолированными рукоятками) и дополнительные (диэлектрические галоши, коврики, подставки)

К вспомогательным можно отнести очки, противогазы, маски, предназначенные для защиты от световых, тепловых и механических воздействий.

К ограждающим относятся переносные щиты, клетки, изолирующие подкладки, переносные заземления и плакаты. Они предназначены в основном для временного ограждения токоведущих частей, к которым возможно прикосновение работающих.

Поражение человека электрическим током опасно для здоровья и жизни любого живого существа. Для защиты от поражений электрическим током в схемы электропроводки включают специальные устройства защиты. Это дифференциальные автоматы защиты, устройства защитного отключения, электрические расцепители и т.п. Каждый из них разработан для защиты человека от определенных прикосновений к токоведущим частям электропроводки.

В электротехнике касание человеком проводов и конструкций, находящихся под напряжением разделяют на прямое и косвенное прикосновение.

Под прямым прикосновением принимается контакт человеком с частью электропроводки, которая в рабочем режиме находится под напряжением. Иначе говоря, качание человека открытых проводов, контактов, клем по которым в нормальном (не аварийном) режимах протекает электрический ток это и есть прямое прикосновение.

Различаются несколько видов прямого прикосновения

  • Касание двумя руками двух различных фаз;
  • Одновременное касание фазы и нуля;
  • Касание только одного провода в 2-х проводной сети.

При касании двух фаз тело человека оказывается включенным в полное линейное напряжение сети. Это самое опасное из всех прикосновений. При нем ток протекает по жизненно важным органам. Например, при касании двумя руками, то ток протекает через сердце и легкие.

Ток через тело человека при двойном прикосновении к фазным проводникам практически не зависит от режима нейтрали сети. При любой нейтрали ток через тело человека определяется по простому закону Ома. Ток через тело прямо пропорционален линейному напряжению и обратно пропорционален сопротивлению человека.

Если принять во внимание сопротивление человека 1000 Ом, а напряжение сети 380 Вольт, то ток через тело человека равен 380 mA(миллиампер), что является смертельным порогом тока поражения.

Примечание: Допустимый интервал времени прохождения тока через тело человека равен 0,01 – 2сек. При этом величины токов, проходящие через тело человека, подразделяются на пять пунктов по типу последствий воздействия.

Таблица значений тока поражения и его последствий по воздействию на человека.

При прямом прикосновении к фазному и нулевому проводу и касании одного провода значение тока через тело человека снижаются, за счет увеличения сопротивления, но все равно остаются смертельно опасными для человека.

Для защиты человека от прямого прикосновения нормативными документами определены меры защиты от прямого прикосновения.

Примечание: По международному электрическому кодексу (МЭК) защита от прямого прикосновения называется базовой защитой.

class="eliadunit">

Базовую защиту от прямого соприкосновения разделяют на физическую защиту от прикосновения (изоляция проводов, огорождения, выделение отдельных помещений для электроустановок) и дополнительную защиту.

Физическая защита это предупредительные меры защиты человека от поражения электрическим током. В большинстве случаях, отдельно без дополнительной защиты, ее нельзя рассматривать как надежную.

Дополнительная защита от прямого прикосновения служит для защиты человека при отсутствии или повреждении первой защиты. Для дополнительной защиты от прямого соприкосновения используется устройство защитного отключения (УЗО) с высокой чувствительностью (I≤30 mA) и минимальным временем срабатывания.

Повторюсь. Прямое прикосновение это непосредственный контакт с частями проводки, по которому протекает ток в нормальном, рабочем режиме. Прямое прикосновение это, скорее всего случайность, вызванная с невнимательностью, оплошностью. Вряд ли кто либо самостоятельно схватится за провод находящейся под напряжением.

Другое дело если прикосновение к токоведущим частям происходит не преднамеренно, а при аварийных режимах. При аварийном режиме человек не предполагает, что токопроводная конструкция оказалась под напряжением. Такое прикосновение называется косвенным, а защита от косвенного прикосновение называется защита от короткого замыкания.

Косвенное прикосновение по своей сути более опасно, по сравнению с прямым прикосновением. Если прямое прикосновение это скорее случайность вызванная оплошностью, то косвенное прикосновение происходит при аварийной ситуации и человек заранее не знает, что та или иная конструкция находится под напряжением.

Для защиты от косвенного прикосновения, она же защита от короткого замыкания, применяются более разнообразные способы. Можно выделить несколько основных из них.

Основная защита:

  • Автоматическое отключение подачи электропитания;

Специальная защита:

  • Применение схем уравнивания потенциалов;
  • Разделение электрических цепей помещения с помощью разделительных трансформаторов;
  • Применение системы безопасного сверхнизкого напряжения (БСНН);
  • Использование заземленной системы безопасного сверхнизкого напряжения (ЗСНН).

Нужно помнить: Максимальное значение напряжения прикосновения Uc, которое человек может выдержать бесконечно долго составляет 50 Вольт переменного тока.

Каждый способ защиты от короткого замыкания различается по своей организации для различных электросетей. Для систем электропитания с глухозаземленной нейтралью (системаTN), с изолированной нейтралью (система IT),с независимым от нейтрали заземлением корпусов электроустановок (система TT) защита от короткого замыкания делается по своим схемам и принципам.

В конце статьи хочу отметить. Нужно помнить что, несмотря на отсутствие запаха, и внешних проявлений электрический ток это жизненно опасен для человека при любом взаимодействии. Только комплексная защита электросети может служить гарантом от любого прикосновения человека к токоведущим частям и поражения человека электрическим током. На этом все!