Последствия несвоевременной балансировки рабочих колес дымососов. Неисправности тягодутьевых машин Причины повышенной вибрации вентилятора промышленного

Причины повреждений тягодутьевых машин

Причинами повреждений тягодутьевых машин во время работы могут быть причины механического, электрического и аэродинамического характера.

Причинами механического характера являются:

Неуравновешенность рабочего колеса в результате износа или отложений золы (пыли) на лопатках;
-износ элементов соединительной муфты: ослабление посадки втулки рабочего колеса на валу или ослабление растяжек крыльчатки;
-ослабление фундаментных болтов (при отсутствии контргаек и ненадежных замков против отвертывания гаек) или недостаточная жесткость опорных конструкций машин;
-ослабление затяжки анкерных болтов корпусов подшипников вследствие установки под ними при центровке некалиброванных прокладок;
-неудовлетворительная центровка роторов электродвигателя и тягодутьевой машины;
-чрезмерный нагрев и деформация вала вследствие повышенной температуры дымовых газов.

Причиной электрического характера является большая неравномерность воздушного зазора между ротором и статором электродвигателя.

Причиной аэродинамического характера является различная производительность по сторонам дымососов с двухсторонним всасыванием, которая может возникнуть при одностороннем заносе золой воздухоподогревателя или неправильной регулировке заслонок и направляющих аппаратов.

Во всасывающих карманах и улитках тягодутьевых машин, транспортирующих запыленную среду, наибольшему абразивному износу подвержены обечайки, а также всасывающие воронки улиток. Плоские боковины улиток и карманов изнашиваются в меньшей степени. На осевых дымососах котлов наиболее интенсивно изнашивается броня корпуса в местах расположения направляющих аппаратов и рабочих колес. Интенсивность износа возрастает с увеличением скорости потока и концентрации в нем угольной пыли или частиц золы.

Причины вибрации тягодутьевых машин

Основными причинами вибрации дымососов и вентиляторов могут быть:

а)неудовлетворительная балансировка ротора после ремонта или разбалансировка во время работы в результате неравномерного износа и повреждения лопаток у рабочего колеса или повреждения подшипников;
б)неправильная центровка валов машин с электродвигателем или расцентровка их из-за износа муфты, ослабления опорной конструкции подшипников, деформация подкладок под ними, когда после центровки оставляется много тонких некалиброванных прокладок и т.п.;
в)повышенный или неравномерный нагрев ротора дымососа, вызвавшего прогиб вала или деформацию рабочего колеса;
г) односторонний занос золой воздухоподогревателя и т.п.

Вибрация возрастает при совпадении собственных колебаний машины и опорных конструкций (резонанс), а также при недостаточной жесткости конструкций и ослаблении фундаментных болтов. Возникшая вибрация может повлечь за собой ослабление болтовых соединений и пальцев муфты, шпонок, нагревание и ускоренный износ подшипников, обрыв болтов крепления корпусов подшипников, станины и разрушение фундамента и машины.

Предупреждение и устранение вибрации тягодутьевых машин требует комплексных мероприятий.

Во время приема - сдачи смены прослушивают дымососы и вентиляторы в работе, проверяют отсутствие вибрации, ненормального шума, исправность крепления к фундаменту машины и электродвигателя, температуру их подшипников, работу соединительной муфты. Такая же проверка производится при обходе оборудования во время смены. При обнаружении дефектов, угрожающих аварийной остановкой, сообщают старшему по смене для принятия необходимых мер и усиливают наблюдение за машиной.
Вибрации вращающихся механизмов устраняют путем их балансировки и центровки с электроприводом. Перед балансировкой производят необходимый ремонт ротора и подшипников машины.

Причины повреждение подшипников

В тягодутьевых машинах применяются подшипники качения и скольжения. Для подшипников скольжения применяются вкладыши двух конструкций: самоустанавливающиеся с шаровой и с цилиндрической (жесткие) опорной поверхностью посадки вкладыша в корпус.

Повреждения подшипников могут быть из-за недосмотра персонала, дефектов их изготовления, неудовлетворительного ремонта и сборки, а особенно -плохой смазки и охлаждения.
Ненормальная работа подшипников определяется по повышению температуры (выше 650°С) и характерному шуму или стуку в корпусе.

Основными причинами повышения температуры подшипников являются:

Загрязнение, недостаточное количество или вытекание смазки из подшипников, несоответствие смазочного материала условиям работы тягодутьевых машин (слишком густое или жидкое масло), чрезмерное заполнение смазкой подшипников качения;
-отсутствие в корпусе подшипника осевых зазоров, необходимых для компенсации температурного удлинения вала;
-малый посадочный радиальный зазор подшипника;
-малый рабочий радиальный зазор подшипника;
-заедание смазочного кольца в подшипниках скольжения при очень высоком уровне масла, которое препятствует свободному вращению кольца, или повреждение кольца;
-износ и повреждение подшипников качения:
дорожки и тела качения выкрашиваются,
трещина на кольцах подшипника,
внутреннее кольцо подшипника неплотно сидит на валу,
смятие и поломка роликов, сепараторов, что сопровождается иногда стуком в подшипнике;
-нарушение охлаждения подшипников, имеющих водяное охлаждение;
-разбалансировка рабочего колеса и вибрация, резко ухудшающие условия нагрузки подшипников.

К дальнейшей работе подшипники качения становятся непригодными из-за коррозии, абразивного и усталостного износа, разрушения сепараторов. Быстрый износ подшипника происходит при наличии отрицательного или нулевого рабочего радиального зазора вследствие разности температур вала и корпуса, неправильно выбранного начального радиального зазора или неверно выбранной и выполненной посадки подшипника на вал или в корпус и др.

Во время монтажа или ремонта тягодутьевых машин нельзя применять подшипники, если у них обнаружены:

Трещины на кольцах, сепараторах и телах качения;
-забоины, вмятины и шелушение на дорожках и телах качения;
-сколы на кольцах, рабочих бортах колец и телах качения;
-сепараторы с разрушенными сваркой и клепкой, с недопустимыми провисанием и неравномерным шагом окон;
-цвета побежалости на кольцах или телах качения;
-продольные лыски на роликах;
-чрезмерно большой зазор или тугое вращение;
-остаточный магнетизм.

При выявлении указанных дефектов подшипники следует заменить новыми.

Чтобы при демонтаже не повредить подшипники качения, необходимо соблюдать следующие требования:

Усилие должно передаваться через кольцо;
-осевое усилие должно совпадать с осью вала или корпуса;
-удары по подшипнику категорически запрещены, их следует передавать через выколотку из мягкого металла.

Применяют прессовый, термический и ударный способы монтажа и демонтажа подшипников. При необходимости можно применять указанные способы в сочетании.

При разборке подшипниковых опор контролируют:

Состояние и размеры посадочных поверхностей корпуса и вала;
-качество установки подшипника,
-центровку корпуса относительно вала;
-радиальный зазор и осевую игру,
-состояние тел качения, сепараторов и колец;
-легкость и отсутствие шума при вращении.

Наибольшие потери возникают при размещении в непосредственной близости от выходного патрубка машины какого-либо поворота. Непосредственно за выходным патрубком машины для снижения потерь напора следует устанавливать диффузор. При угле раскрытия диффузора больше 200 ось диффузора должна быть отклонена в сторону вращения рабочего колеса так, чтобы угол между продолжением обечайки машины и наружной стороной диффузора был около 100. При угле раскрытия меньше 200 диффузор следует выполнять симметричным или с наружной стороной, являющейся продолжением обечайки машины. Отклонение оси диффузора в обратную сторону приводит к увеличению его сопротивления. В плоскости, перпендикулярной плоскости рабочего колеса, диффузор выполняется симметричным.

Причины повреждения рабочих колес и кожухов дымососов

Основным видом повреждения рабочих колес и кожухов д ымососов является абразивный износ при транспортировке запыленной среды из-за больших скоростей и высокой концентрации уноса (золы) в дымовых газах. Наиболее интенсивно изнашиваются основной диск и лопатки в местах их приварки. Абразивный износ рабочих колес с загнутыми вперед лопатками значительно больше, чем колес с лопатками, загнутыми назад. При работе тягодутьевых машин наблюдается также и коррозионный износ рабочих колес при сжигании в топке сернистого мазута.
Зоны износа листовых лопаток необходимо наплавить твердым сплавом. Износ лопаток и дисков роторов дымососов зависит от сорта сжигаемого топлива и качества работы золоуловительных установок. Плохое действие золоуловителей ведет к их интенсивному износу, уменьшает прочность и может стать причиной разбалансировки и вибраций машин, а износ кожухов ведет к неплотностям, пылению и ухудшению тяги.

Снижение интенсивности эрозионного износа деталей достигается ограничением максимальной частоты вращения ротора машины. Для дымососов частота вращения принимается около 700 об/мин, но не более 980.

Эксплуатационными методами уменьшения износа являются: работа с минимальным избытком воздуха в топке, устранение присосов воздуха в топке и газоходах и мероприятия по снижению потерь от механического недожога топлива. Это уменьшает скорости дымовых газов и концентрацию в них золы и уноса.

Причины снижения производительности тягодутьевых машин

Производительность вентилятора ухудшается при отклонении от проектных углов установки лопаток крыльчатки и при дефектах их изготовления. Необходимо учесть. что при наплавлении твердыми сплавами или усилении лопатки приваркой накладок с целью удлинения срока их службы может произойти ухудшение характеристики дымососа: к таким же последствиям приводит чрезмерный износ и неправильное противоизносное бронирование корпуса дымососа (уменьшение проходных сечений, увеличение внутренних сопротивлений). К дефектам газовоздушного тракта относятся - неплотности, присосы холодного воздуха через обдувочные лючки и места заделки их в обмуровку, лазы в обмуровке котла. неработающие горелки, проходы постоянных обдувочных устройств через обмуровку котла и хвостовые поверхности нагрева, гляделки в топочной камере и запальные отверстия для горелок и т.п.. В результате чего увеличиваются объемы дымовых газов и соответственно сопротивление тракта. Газовое сопротивление увеличивается также при загрязнении тракта очаговыми остатками и при нарушении взаимного расположения змеевиков пароперегревателя и экономайзера (провисания, переплетения и т.п.). Причиной внезапного роста сопротивления может быть обрыв или заклинивание в прикрытом положении заслонки или направляющего аппарата дымососа.

Возникновение неплотности в газовом тракте вблизи дымососа (открытый лаз, поврежденный взрывной клапан и т.п.) ведет к снижению разрежения перед дымососом и увеличению его производительности. Сопротивление тракта до места неплотности падает, так как дымосос работает в большей мере на подсос воздуха из этих мест, где сопротивление значительно меньше, чем в основном тракте, и количество дымовых газов, забираемых им из тракта, снижается.

Характеристика машины ухудшается при увеличенном перетоке газов через зазоры между входным патрубком и рабочим колесом. Нормально диаметр патрубка в свету должен быть на 1-1,5% меньше диаметра входа в рабочее колесо; осевой и радиальный зазоры между кромкой патрубка и входом в колесо не должно превышать 5 мм; смещение осей их отверстий не должно быть больше 2-3 мм.

В эксплуатации необходимо своевременно устранять неплотности в местах прохода валов и у корпусов из-за их износа, в прокладках разъемов и т.п.
При наличии обводного короба дымососа (прямого хода) с неплотной заслонкой - в нем возможен обратный переток выбрасываемых дымовых газов, во всасывающий патрубок дымососа.

Рециркуляция дымовых газов возможна также при установке двух дымососов на котел: через оставленный дымосос - к другому, работающему. При параллельной работе двух дымососов (двух вентиляторов) надо следить за тем, чтобы все время была одинаковой их нагрузка, которую контролируют по показаниям амперметров электродвигателей.

В случае уменьшения производительности и напора во время работы тягодутьевых машин следует проверить:

Направление вращения вентилятора (дымососа);
-состояние лопаток рабочего колеса (износ и точность наплавки или установки накладок);
-по шаблону - правильность установки лопаток в соответствии с их проектным положением и углами входа и выхода (для новых рабочих колес или после замены лопаток);
-соответствие рабочим чертежам конфигурации улитки и стен корпуса, языка и зазоров между конфузором; точность установки и полноту открытия заслонок до и после вентилятора (дымососа);
-разрежение перед дымососом, напор после него и напор после дутьевого вентилятора и сравнить с прежним;
-плотность в местах прохода валов машины, при выявлении неплотности в них и в воздухопроводе устранить ее;
-плотность воздухоподогревателя.

Надежность работы тягодутьевых машин в значительной мере зависит от тщательной приемки механизмов, поступающих на монтажную площадку, качества монтажа, профилактического ремонта и правильной эксплуатации, а также от исправности контрольно-измерительных приборов для измерения температуры уходящих газов, температуры нагрева подшипников, электродвигателя и т.д.

Для обеспечения безаварийной и надежной работы вентиляторов и дымососов необходимо:
- систематически следить за смазкой и температурой подшипников, не допускать загрязнения смазочных масел;
- заполнять подшипники качения консистентной смазкой не более чем на 0,75, а при больших скоростях тягодутьевого механизма - не более чем на 0,5 объема корпуса подшипника во избежание их нагревания. Уровень масла должен находиться у центра нижнего ролика или шарика при заполнении подшипников качения жидкой смазкой. Масляную ванну подшипников с кольцевой смазкой следует заполнять до красной черты на масломерном стекле, указывающем нормальный уровень масла. С целью удаления избытка масла при переполнении корпуса выше допустимого уровня корпус подшипника должен быть оборудован сливной трубкой;
- обеспечить непрерывное водяное охлаждение подшипников дымососов;
- для возможности контроля слив воды, охлаждающей подшипники, должен осуществляться через открытые трубки и сливные воронки.

При разборке и сборке подшипников скольжения, замене деталей многократно контролируются такие операции:
а)проверка центровки корпуса по отношению к валу и плотности прилегания нижнего полувкладыша;
б)замер верхнего, боковых зазоров вкладыша и натяга вкладыша крышкой корпуса;
в)состояние баббитовой поверхности заливки вкладыша (определяется простукиванием латунным молотком, звук должен быть чистым). Общая площадь отслаивания допускается не более 15% при отсутствии трещин в местах отслаивания. В районе упорного бурта отслаивание не допускается. Разность диаметров по различным сечениям вкладыша - не более 0,03 мм. Во вкладышах подшипника на рабочей поверхности проверяют отсутствие зазоров, рисок, забоин, раковин, пористостей, инородных включений. Эллиптичность у смазочных колец разрешается не более 0,1 мм, а неконцентричность в местах разъема - не более 0,05 мм.

Обслуживающему персоналу следует:
- следить по приборам, чтобы температура уходящих газов не превышала расчетную;
- производить по графику осмотр и текущий ремонт дымососов и вентиляторов со сменой масла и промывкой подшипников, если это требуется, устранением неплотностей, проверкой правильности и легкости открытия шиберов и направляющих аппаратов, их исправности и т.д.;
- закрывать всасывающие отверстия дутьевых вентиляторов сетками;
- производить тщательную приемку запасных частей, поступающих для замены во время капитального и текущего ремонтов тягодутьевых машин (подшипников, валов, крыльчаток и т.п.);
- производить опробование тягодутьевых машин после монтажа и капитального ремонта, а также приемку отдельных узлов в процессе монтажа (фундаменты, опорные рамы и т.п.);
- не допускать приемку в эксплуатацию машин с вибрацией подшипников 0,16 мм при частоте вращения 750 об/мин, 0,13 мм - при 1000 об/мин и 0,1 мм- при 1500 об/мин.

Информация на сайте является ознакомительной.

Если вы не нашли ответа на интересующий вас вопрос, свяжитесь с нашими специалистами:

По телефону 8-800-550-57-70 (звонок по России бесплатный)

По электронной почте [email protected]

Повышенная вибрация вентилятора является одной из его главных «бед», вызывая преждевременный выход из строя узлов, деталей, рабочего колеса, лопаток, подшипниковых опор, муфты, разрушение фундамента и самого вентилятора в целом.

Причины вибрации вентиляторов:

  • дисбаланс вала;
  • нарушение центровки привода;
  • износ или повреждения подшипников;
  • дефекты электромагнитной части привода (электродвигателя);
  • дефекты зубчатых передач (если есть промежуточный редуктор);
  • влияние аэрогидродинамических сил;
  • резонансные явления и др.

Уровень вибрации вентиляторов наиболее точно отражает текущее техническое состояние вентилятора, качество его сборки и установки. Иными словами, контролируя уровень вибрации вентилятора, можно выявить все вышеназванные огрехи и принять своевременные меры по их устранению, обеспечивая безаварийную работу вентилятора.

Методика измерений вибрации промышленных вентиляторов мощностью до 300 кВт регламентируется , а более мощных – ГОСТ ИСО 10816-3 . В данной статье мы рассмотрим промышленные вентиляторы мощностью до 300 кВт и методику контроля их вибрационного состояния с целью определения некоторого базового уровня вибрации и тенденции ее изменения.

Прежде всего, отметим, что все промышленные вентиляторы мощностью до 300 кВт классифицируются по уровню допустимой вибрации и дисбалансу на BV-категории (см. табл.1):

В соответствии с требованиями ГОСТ 31350-2007 (ИСО 14694:2003) измерения вибрации проводятся на подшипниковых опорах в направлениях, перпендикулярных оси вращения вала. Рекомендуемые точки измерения приведены на рис. 1.


а) для горизонтального осевого вентилятора


б) для горизонтального радиального вентилятора одностороннего всасывания

в) для горизонтального радиального вентилятора двухстороннего всасывания

г) для вертикального осевого вентилятора

Рисунок 1. Точки и направления измерений вибрации вентиляторов

Измерения абсолютной вибрации на опорах подшипников производятся с помощью виброметров BALTECH VP-3410 (серия «VibroPoint») с контактными датчиками инерционного типа – пьезоакселерометрами (датчики ускорения). При проведении измерений следует четко соблюдать стандартные требования к надежности крепления, направлению установки, и отсутствию существенного влияния массы и размеров датчика на результаты измерений. В целом, допускается суммарная неопределенность измерений в пределах ± 10% от измеряемого параметра. Виброметры компании «БАЛТЕХ» универсальные и позволяют в зависимости от требований производителя вентиляторов измерять три параметра вибрации (виброперемещение, виброскорость или виброускорение).

Допустимые пределы вибрации вентиляторов в период эксплуатации приведены в Таблице 2. Следует отметить, что за счет массы и жесткости системы опоры на месте эксплуатации, данные значения несколько выше значений вибрации при заводских испытаниях.

Таблица 2. Предельные значения вибрации при эксплуатации вентиляторов.

Уровню «Пуск в эксплуатацию» должны соответствовать все новые вентиляторы. По мере наработки и износа деталей, уровень вибрации вентилятора неизбежно увеличивается и при достижении уровня «Предупреждение» необходимо исследовать причины повышения вибрации и принять меры по их устранению. Работа вентилятора в таком состоянии должна быть ограничена по времени до проведения ремонтных работ.

При достижении уровня «Останов» вентилятор должен быть немедленно остановлен и приняты меры по устранению источников критического уровня вибраций. В противном случае возможны серьезные повреждения, ведущие к разрушению вентилятора. В целом же, на основе статистики эксплуатации вентиляторного оборудования, считается необходимым принятие мер по устранению источников повышенных вибрации, когда ее уровень превышает базовое значение в 1,6 раза или на 4 дБ.

При виброконтроле вентилятора важно обращать особое внимание на скачкообразное изменение уровня вибрации со временем. Скачок вибрации является явным свидетельством возникновения каких-то неполадок и в данном случае необходимо провести осмотр вентилятора и устранить обнаруженные недостатки.

В некоторых случаях дополнительно проводят измерение перемещения вала относительно корпуса подшипника с помощью бесконтактных датчиков вибрации – индукционных, вихретоковых и др. В Таблице 3 приведены допустимые значения перемещения вала, которые следует понимать только как рекомендуемые – на самом же деле данные значения могут быть и другими в зависимости от типа и размеров подшипника скольжения, величине и направления нагрузки и т.д.

Таблица 3. Предельное перемещение вала внутри подшипника

Виброконтроль и вибромониторинг вентиляторов наиболее удобно проводить с помощью переносного портативного прибора «ПРОТОН-Баланс-II ». Его основное преимущество перед простыми виброметрами заключается в возможности проведения балансировки вентиляторов в собственных опорах в соответствии с требованиями ГОСТ 31350-2007 (ИСО 14694:2003) , а также контроля температуры подшипниковых узлов и контроля частоты оборотов вентилятора.

Для обучения методике проведения измерений вибрации вентиляторов и получения навыков работы с виброметром-балансировщиком «ПРОТОН-Баланс-II » и другими виброметрами компании «БАЛТЕХ», рекомендуется пройти обучение на курсе ТОР-103 «Основы вибродиагностики. Вибрация вентиляторов ГОСТ » в Учебном центре повышения квалификации нашей компании в Санкт-Петербурге, в Астане или в Любеке (Германия).

Борьба с шумом и вибрацией При установке вентиляторов необходимо выполнить определённые требования общие для разных типов этих машин. При установке вентиляторов других конструктивных исполнений очень важно тщательно центрировать геометрические оси валов вентилятора и электродвигателя если они соединяются с помощью муфт. При наличии ременной передачи необходимо тщательно контролировать установку шкивов вентилятора и двигателя в одной плоскости степень натяжения ремней их целостность. Всасывающие и выхлопные отверстия вентиляторов не...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Установка вентиляторов. Борьба с шумом и вибрацией

При установке вентиляторов необходимо выполнить определённые требования, общие для разных типов этих машин. Перед установкой необходимо проверить соответствие намеченных к установке вентиляторов и электродвигателей данным проекта. Особое внимание следует обратить направлению вращения рабочих колёс, обеспечить требуемые зазоры между вращающимися и неподвижными деталями, проверить состояние подшипников (отсутствие повреждений, грязи, наличие смазки).

Наиболее прост монтаж электровентиляторов (конструктивное исполнение 1, см. лекцию 9). При установке вентиляторов других конструктивных исполнений очень важно тщательно центрировать геометрические оси валов вентилятора и электродвигателя, если они соединяются с помощью муфт. При наличии ременной передачи необходимо тщательно контролировать установку шкивов вентилятора и двигателя в одной плоскости, степень натяжения ремней, их целостность.

Валы у радиальных вентиляторов должны быть строго горизонтальны, валы крышных вентиляторов – строго вертикальны.

Корпуса электродвигателей должны быть заземлены, соединительные муфты и ременные передачи – ограждены. Всасывающие и выхлопные отверстия вентиляторов, не присоединённые к воздуховодам, должны быть защищены сетками.

Показателем хорошего качества монтажа вентилятора является сведение к минимуму вибраций. Вибрации – это колебательные движения элементов конструкций под действием периодических возмущающих сил. Расстояние между крайними положениями колеблющихся элементов называют вибросмещением. Скорость движения точек вибрирующих тел меняется по гармоническому закону. Среднеквадратическое значение скорости нормируется для вентиляторов (v  6.7 мм/с).

Если монтаж выполнен правильно, то причиной вибраций является неуравновешенность вращающихся масс из-за неравномерности распределения материала по окружности рабочего колеса (из-за неравномерности сварных швов, наличия раковин, неравномерного износа лопаток и т.д.). Если колесо узкое, то центробежные силы, вызванные неуравновешенностью Р , можно считать расположенными в одной плоскости (рис.11.1). В случае широких колёс (ширина колеса более 30% его наружного диаметра) может появиться пара сил (центробежных), периодически изменяющих своё направление (с каждым оборотом), и поэтому тоже вызывающая вибрации. Это так называемая динамическая неуравновешенность (в отличие от статической).

Рис. 11.1 Статическая (а) и динамическая (б) Рис. 11.2 Статическая балансиров-

неуравновешенность рабочего колеса ка рабочего колеса

В случае статической неуравновешенности , для её устранения применяют статическую балансировку. Для этого закреплённое на валу рабочее колесо помещают на балансировочные призмы (рис. 11.2), установленные строго горизонтально. При этом рабочее колесо будет стремиться занять положение, при котором центр неуравновешенных масс находится в крайнем нижнем положении. Уравновешивающий груз, величина которого определяется экспериментально (путём нескольких попыток), должен устанавливаться в верхнем положении и, в конце концов, надёжно привариваться к задней поверхности рабочего колеса.

Динамическая неуравновешенность при невращающемся роторе (рабочем колесе) никак не проявляется. Поэтому заводы-изготовители должны проводить динамическую балансировку всех вентиляторов. Она выполняется на специальных станках при вращении ротора на гибких опорах.

Таким образом, борьба с вибрациями начинается с балансировки рабочих колёс. Другим путём снижения вибраций вентилятора является установка их на виброизолирующих основаниях . В простейших случаях могут применяться резиновые прокладки. Однако, более эффективны специальные пружинные виброизоляторы , которые могут поставляться комплектно с вентиляторами заводами-изготовителями.

С целью уменьшения передачи вибраций от нагнетателя по воздуховодам, последние необходимо подсоединять к вентилятору с помощью мягких (гибких) вставок , которые представляют собой манжеты из прорезиненой ткани или брезента длиной 150-200 мм.

Как виброизоляторы, так и гибкие вставки не влияют на величину вибрации нагнетателя, они служат лишь для её локализации, т.е. не дают ей распространяться от нагнетателя (где она зарождается) на строительные конструкции, на которых устанавливается нагнетатель, и на систему воздуховодов (трубопроводов).

Вибрации элементов конструкции вентиляторов являются одним из источников шума, создаваемого этими машинами. Шум определяют как звуки, воспринимаемые человеком негативно и наносящие вред здоровью. Шум вентиляторов, вызванный вибрациями, называют механическим шумом (сюда же следует отнести шум от подшипников электродвигателя и рабочего колеса). Поэтому основным способом борьбы с механическим шумом является снижение вибраций вентилятора.

Другая важнейшая составляющая шума вентилятора – шум аэродинамического происхождения . Вообще шумы – это всякие нежелательные звуки, раздражающе действующих на человека. Количественно звук определяется звуковым давлением, но при нормировании шума и в расчётах по шумоглушению используется относительная величина – уровень шума в дБ (децибелах). Также измеряется и уровень звуковой мощности. В общем случае шум – совокупность звуков различной частоты. Максимальный уровень шума имеет место на основной частоте:

f=nz/60 , Гц;

где n – скорость вращения, об/мин, z – число лопаток рабочего колеса.

Шумовой характеристикой вентилятора называют обычно совокупность значений уровней звуковой мощности аэродинамического шума в октавных частотных полосах (т.е. при частотах 65, 125, 250, 500, 1000, 2000 Гц (спектр шума)), а также зависимость уровня звуковой мощности от расхода.

Для большинства нагнетателей минимум уровня аэродинамического шума соответствует номинальному режиму работы нагнетателя (или находится вблизи него).

Установка насосов. Явление кавитации. Высота всасывания.

Требования к установке нагнетателей в части устранения вибраций и шума в полной мере относится к установке насосов, однако, говоря об установке насосов, необходимо иметь в виду некоторые особенности их эксплуатации. Простейшая схема установки насоса показана на рис. 12.1. Вода через приёмный клапан 1 попадает во всасывающий трубопровод и затем в насос, и затем через обратный клапан 2 и задвижку 3 в напорный трубопровод; насосная установка оборудуется вакууметром 4 и манометром 5.

Рис. 12.1 Схема насосной установки

Поскольку при отсутствии воды во всасывающем трубопроводе и насосе при пуске в работу последнего разрежение во входном патрубке далеко недостаточно для подъёма воды до уровня всасывающего ответвления, насос и всасывающий трубопровод необходимо заливать водой. Для этой цели служит ответвление 6, закрываемое пробкой.

При установке крупных насосов (с диаметром входного патрубка более 250 мм) заполнение насоса производится с помощью специального вакуумного насоса, создающего глубокий вакуум при работе на воздухе, достаточный для подъёма воды из приёмного колодца.

В обычных конструкциях центробежных насосов наименьшее давление имеет место вблизи входа в лопастную систему на вогнутой стороне лопастей, где относительная скорость достигает максимального значения, а давление - минимального. Если в этой области давление понизится до величины давления насыщенного пара при данной температуре, то возникает явление, называемое кавитацией .

Сущность кавитации состоит во вскипании жидкости в области пониженного давления и в последующей конденсации паровых пузырьков при перемещении кипящей жидкости в область повышенного давления. В момент смыкания пузырька происходит точечный резкий удар и давление достигает в этих точках очень большой величины (несколько мегапаскалей). Если пузырьки в этот момент находятся вблизи поверхности лопасти, то удар приходится на эту поверхность и вызывает местное разрушение металла. Это так называемый питтинг - множество мелких раковин (как при оспе).

Причём, происходит не только механическое разрушение поверхностей лопаток (эррозия), но и интенсифицируются процессы электрохимической коррозии (для рабочих колёс, сделанных из чёрных металлов – чугуна и нелигированных сталей.

Следует отметить, что такие материалы, как латунь и бронза гораздо лучше противостоят вредным воздействиям кавитации, но эти материалы весьма дороги, поэтому изготовление рабочих колёс насосов из латуни или бронзы должно быть соответствующим образом обосновано.

Но кавитация вредна не только потому, что разрушает металл, но и потому, что в кавитационном режиме резко снижается к.п.д. и другие параметры насоса. Работа насоса в этом режиме сопровождается значительным шумом и вибрациями.

Работа насоса при начальной стадии кавитации нежелательна, но допускается. При развитой кавитации (образование каверн - отрывных зон) работа насоса недопустима.

Основной мерой против кавитации в насосах является соблюдение такой высоты всасывания Н вс (рис. 12.1), при которой кавитация не наступает. Такая высота всасывания называется допустимой.

Пусть Р 1 и с 1 - давление и абсолютная скорость течения перед рабочим колесом. Р а - давление на свободной поверхности жидкости,  Н - потери напора во всасывающем трубопроводе, тогда уравнение Бернулли:

отсюда

Однако, при обтекании лопатки, на её вогнутой стороне, местная относительная скорость, может быть еще больше, чем во входном патрубке w 1 (w 1 - относительная скорость в сечении, где абсолютная равна с 1 )

(12.1)

где  -коэффициент кавитации, равный:

Условием отсутствия кавитации является Р 1 >Р t ,

где Р t - давление насыщенных паров перемещаемой жидкости, которое зависит от свойств жидкости, её температуры, атмосферного давления.

Назовём кавитационным запасом превышение полного напора жидкости над напором, соответствующим давлению насыщенных паров.

Определяя из последнего выражения и подставляя в 12.1, получим:

Величина кавитационного запаса может быть определена по данным кавитационных испытаний, публикуемых заводами-изготовителями.

Объёмные нагнетатели

13.1 ПОРШНЕВЫЕ НАСОСЫ

На рис. 13.1 показана схема простейшего поршневого насоса (см. лекц. 1) одностороннего всасывания с приводом через кривошипно-шатунный механизм. Передача энергии потоку жидкости происходит за счёт периодического увеличения и уменьшения объёма полости цилиндра со стороны клапанной коробки. При этом указанная полость сообщается то со стороной всасывания (при увеличении объёма), то со стороной нагнетания (сокращение объёма), путём открытия одного из клапанов; другой клапан при этом закрывается.

Рис. 13.1 Схема поршневого насоса Рис. 13.2 Индикаторная диаграмма

одностороннего действия поршневого насоса

Изменение давления в указанной полости описывается так называемой индикаторной диаграммой. При движении поршня из крайнего левого положения вправо, в цилиндре создаётся разрежение Р р , жидкость увлекается за поршнем. При движении поршня справа налево давление возростает до величины Р наг , и жидкость выталкивается в нагнетательный трубопровод.

Площадь индикаторной диаграммы (рис. 13.2), измеренная в Нм/м 2 , представляет собой работу поршня за два хода, отнесённую к 1 м 2 его поверхности.

В начале всасывания и в начале негнетания имеют место колебания давления, обусловленные влиянием инерции клапанов и «прилипанием» их к соприкасающимся поверхностям (сёдлам).

Подача поршневого насоса определяется размерами цилиндра и числом ходов поршня. Для насосов одностороннего действия (рис. 13.1):

где: n – число двойных ходов поршня в минуту; D – диаметр поршня, м; S - ход поршня, м;  о – объёмный к.п.д.

Объёмный к.п.д. учитывает, что часть жидкости теряется через неплотности, а часть теряется через клапаны, которые закрываются не мгновенно. Он определяется при испытаниях насоса и составляет обычно  о = 0.7-0.97.

Положим, что длина кривошипа R много меньше длины шатуна, т.е. R/L  0 .

Двигаясь из левого крайнего положения в правое, поршень проходит путь

х=R-Rcos  , где  - угол поворота кривошипа.

Тогда скорость движения поршня

Где (13.1)

Ускорение поршня:

Очевидно, всасывание жидкости в клапанную коробку и нагнетание из неё происходят крайне неравномерно. Это вызывает возникновение инерционных сил, нарушающих нормальную работу насоса. Если обе части выражения (13.1) умножить на площадь поршня  D 2 /4 , мы получим соответствующую закономерность для подачи (рис. 13.3)

Поэтому жидкость будет двигаться неравномерно по всей системе трубопроводов, что может привести к усталостному разрушению их элементов.

Рис. 13.3 График подачи поршневого насоса Рис. 13.4 График подачи поршневого

одинарного действия насоса двойного действия

Одним из методов выравнивания подачи является использование насосов двойного действия (рис. 13.5), в которых за один оборот приводного вала происходит два хода всасывания и два хода нагнетания (рис. 13.4).

Другой способ повышения равномерности подачи заключается в применении воздушных колпаков (рис. 13.4). Воздух, заключённый в колпаке, служит упругой средой, выравнивающей скорости движения жидкости.

Полная работа поршня за двойной ход

А мощность, кВт.

Рис. 13.5 Схема поршневого насоса

двойного действия с воздушным колпаком

Это так называемая индикаторная мощность – площадь индикаторной диаграммы. Действительная мощность N больше индикаторной на величину потерь механического трения, что определяется величиной механического к.п.д.

13.2 ПОРШНЕВЫЕ КОМПРЕССОРЫ

По своему принципу действия, основанному на вытеснении рабочей среды поршнем, поршневой компрессор напоминает поршневой насос. Однако рабочий процесс поршневого компрессора имеет существенные отличия, связанные со сжимаемостью рабочей среды.

На рис. 13.6 показана схема и индикаторная диаграмма поршневого компрессора одинарного действия. На диаграмме  (v) по оси абсцисс отложен объём под поршнем в цилиндре, однозначно зависящий от положения поршня.

Двигаясь из правого крайнего положения (точка 1) влево, поршень сжимает газ в полости цилиндра. Всасывающий клапан закрыт в течение всего процесса сжатия. Нагнетательный клапан закрыт до тех пор, пока разность давлений в цилиндре и нагнетательном патрубке преодолеет сопротивление пружины. Затем нагнетательный клапан открывается (точка 2) и поршень вытесняет газ в нагнетательный трубопровод вплоть до точки 3 (крайнее левое положение поршня). Затем начинается движение поршня вправо вначале при закрытом всасывающем клапане, затем (точка 4) он открывается и газ поступает в цилиндр.

Рис. 13.6 Схема и индикаторная диаграмма Рис. 13.7 Схема шестерёнчатого насоса

поршневого компрессора

Таким образом, линия 1-2 соответствует процессу сжатия. В поршневом компрессоре теоретически возможны:

Политропный процесс (кривая 1-2 на рис. 13.6).

Адиабатный процесс (кривая 1-2’’).

Изотермический процесс (кривая 1-2’).

Протекание процесса сжатия зависит от теплообмена между газом в цилиндре и окружающей средой. Поршневые компрессоры выполняются обычно с водяным охлаждением цилиндра. При этом процесс сжатия и расширения являются политропными (с показателями политропы n

Вытолкнуть весь газ из цилиндра невозможно, т.к. поршень не может вплотную подойти к крышке. Поэтому часть газа остаётся в цилиндре. Объём, занятый этим газом, называется объёмом вредного пространства. Это приводит к уменьшению объёма всасываемого газа V вс . Отношение этого объёма к рабочему объёму цилиндра V р , называется объёмным коэффициентом  о =V вс /V р .

Теоретическая объёмная подача поршневого компрессора

Действительная подача Q=  о Q т .

Работа компрессора расходуется не только на сжатие газа, но и на преодоление сопротивления трения

A=A ад +A тр .

Отношение А ад /А=  ад называется адиабатическим к.п.д. если исходить из более экономичного изотермического цикла, то получим так называемый изотермический к.п.д.  из =А из /А, А=А из +А тр .

Если работу А умножить на массовую подачу G , то получим мощность компрессора:

N i =AG – индикаторная мощность;

N ад =A ад G – при адиабатном процессе сжатия;

N из =A из G – при изотермическом процессе сжатия.

Мощность на валу компрессора N в больше индикаторной на величину потерь на трение, что учитывается механическим к.п.д.:  м =N i /N в .

Тогда общий к.п.д. компрессора  =  из  м .

13.3.1 ШЕСТЕРЕНЧАТЫЕ НАСОСЫ

Схема шестеренчатых насосов приведена на рис. 13.7.

Находящиеся в защеплении зубчатые колеса 1, 2 помещены в корпус 3. При вращении колес в направлении, указанном стрелками, жидкость поступает из полости всасывания 4 во впадины между зубьями и перемещается в напорную полость 5. Здесь при входе зубьев в защепление происходит вытеснение жидкости из впадины.

Минутная подача шестеренчатого насоса приближенно равна:

Q=  А(D г -А)вn  о ,

где: А - межцентровое расстояние (рис. 13.7); D г - диаметр окружности головок; в - ширина шестерен; n - частота вращения ротора, об/мин;  о – объемный к.п.д., находящийся в пределах 0.7...0.95.

13.3.2 ПЛАСТИНЧАТЫЕ НАСОСЫ

Простейшая схема пластинчатого насоса показана на рис. 13.8. В корпусе 1 вращается эксцентрично расположенный ротор 2. В радиальных канавках, выполненных в роторе, перемещаются пластины 3. Участок внутренней поверхности корпуса ав и сd , а также пластины отделяют полость всасывания 4 от полости нагнетания 5. Вследствие наличия эксцентриситета e , при вращении ротора жидкость переносится из полости 4 в полость 5.

Рис. 13.8 Схема пластинчатого насоса Рис. 13.9 Схема водокольцевого вакуум-насоса

Если эксцентриситет выполнен постоянным, то средняя подача насоса равна:

Q=f а lzn  о ,

где f а - площадь пространства между пластинами, при пробегании его по дуге ав ; l - ширина ротора; n - частота вращения, об/мин;  о - объемный к.п.д.; z – количество пластин.

Пластинчатые насосы применяются для создания давлений до 5 МПа.

13.3.3 ВОДОКОЛЬЦЕВЫЕ ВАКУУМ-НАСОСЫ

Насосы этого типа применяются для отсасывания воздуха и создания вакуума. Устройство такого насоса показано на рис. 13.9. В цилиндрическом корпусе 1 с крышками 2 и 3 эксцентрично расположен ротор 4 с лопастями 5. При вращении ротора вода, частично заполняющая корпус, отбрасывается к его переферии, образуя кольцевой объем. При этом объемы, находящиеся между лопастями, изменяются в зависимости от их положения. Поэтому возникает всасывание воздуха через серповидное отверстие 7,сообщающееся с патрубком 6. В левой части (на рис. 13.9), где объем уменьшается, происходит вытеснение воздуха через отверстие 8 и патрубок 9.

В идеальном случае (при отсутствии зазора между лопастями и корпусом) вакуум-насос может создавать во всасывающем патрубке давление, равное давлению насыщения пара. При температуре T =293 К оно будет равно 2.38 кПа.

Теоретическая подача:

где D 2 и D 1 – внешний и внутренний диаметры рабочего колеса, м; а – минимальное погружение лопасти в водяное кольцо, м; z - число лопастей; b – ширина лопасти; l – радиальная длина лопасти; s – толщина лопасти, м; n – частота вращения, об/мин;  о – объёмный к.п.д.

Струйные нагнетатели

Струйные нагнетатели получили широкое применение в качестве элеваторов на вводе теплосетей в здания (для обеспечения смешения и циркуляции воды), а также в качестве эжекторов в системах вытяжной вентиляции взрывоопасных помещений, в качестве инжекторов в холодильных установках и в других случаях.

Рис. 14.1 Водоструйный элеватор Рис. 14.2 Вентиляционный эжектор

Струйные нагнетатели состоят из сопла 1 (рис. 14.1 и 14.2), куда подаётся эжектирующая жидкость; камеры смешения 2, где происходит смешение эжектирующей и эжектируемой жидкостей и диффузора 3. Эжектирующая жидкость, подаваемая к соплу, выходит из него с большой скоростью, образуя струю, которая захватывает в камере смешения эжектируемую жидкость. В камере смешения происходит частичное выравнивание поля скоростей и повышение статического давления. Это повышение продолжается в диффузоре.

Для подачи воздуха к соплу применяются вентиляторы высокого давления (эжекторы низкого давления), либо используется воздух из пневматической сети (эжекторы высокого давления).

Основными параметрами, характеризующими работу струйного нагнетателя являются массовые расходы эжектирующей G 1 =  1 Q 1 и эжектируемой жидкости G 2 =  2 Q 2 ; полные давления эжектирующей P 1 и эжектируемой P 2 жидкостей на входе в нагнетатель; давление смеси на выходе из нагнетателя P 3 .

В качестве характеристик струйного нагнетателя (рис. 14.3) строят зависимости степени повышения давления  P c /  P p от коэффициента смешения u=G 2 /G 1 . Здесь  P c =P 3 -P 2 ,  P p =P 1 -P 2 .

Для расчётов используется уравнение количества движения:

C 1 G 1 +  2 c 2 G 2 +  3 c 3 (G 1 +G 2 )=F 3 (P k1 -P k2 ) ,

где c 1 ; c 2 ; c 3 – скорости на выходе из сопла, на входе в камеру смешения и на выходе из неё;

F 3 – площадь сечения камеры смешения;

 2 и  3 – коэффициенты, учитывающие неравномерность поля скоростей;

P k1 и P k2 – давления на входе и на выходе из камеры смешения.

К.п.д. струйного нагнетателя может быть определён по формуле:

Эта величина для струйных нагнетателей не превышает 0.35.

Тягодутьевые машины

Дымососы - транспортируют дымовые газы по газоходам котла и дымовой трубе и совместно с последней преодолевают сопротивление этого тракта и системы золоудаления.

Дутьевые вентиляторы работают на наружном воздухе, подавая его через систему воздуховодов и воздухоподогреватель в топочную камеру.

И дымососы, и дутьевые вентиляторы имеют рабочие колёса с загнутыми назад лопатками. В обозначениях дымососов присутствуют буквы ДН (дымосос с загнутыми назад лопатками) и цифры – диаметр рабочего колеса в дециметрах. Например, ДН-15 – дымосос с загнутыми назад лопатками и диаметром рабочего колеса 1500 мм. В обозначении дутьевых вентиляторов – ВДН (вентилятор дутьевой с загнутыми назад лопатками) и также диаметр в дециметрах.

Тягодутьевые машины развивают высокие давления: дымососы – до 9000 Па, дутьевые вентиляторы – до 5000 Па.

Главные эксплуатационные особенности дымососов - это возможность работы при высоких температурах (до 400 С) и при высоком содержании пыли (золы) - до 2 г/м 3 . В этой связи дымососы нередко используются в системах пылеочистки газов.

Обязательным элементом дымососов и дутьевых вентиляторов является направляющий аппарат. Построив характеристики данного дымососа при разных углах установки направляющего аппарата и выделив на них участки экономичной работы (  0.9  мах ), получают некоторую область – зону экономичной работы (рис.15.1), которые используются для подбора дымососа (аналогично сводным характеристикам общепромышленных вентиляторов). Сводный график для дутьевых вентиляторов представлен на рис.15.2. При выборе типоразмера тягодутьевой машины необходимо стремиться к тому, чтобы рабочая точка была возможно ближе к режиму максимального к.п.д., который обозначен на индивидуальных характеристиках (в промышленных каталогах).

Рис. 15.1 Конструкция дымососа

Заводские характеристики дымососов приведены в каталогах для температуры газов t хар =100  С. При выполнении подбора дымососа, необходимо привести характеристики к фактической расчётной температуре t . Тогда приведенное давление

Дымососы применяются при наличии золоулавливающего оборудования, остаточная запыленность должна быть не более 2 г/м 3 . При подборе дымососов по каталогу, вводятся коэффициенты запаса:

Q к =1.1Q; P к =1.2P .

В дымососах применяются рабочие колёса с загнутыми назад лопатками. На практике в котельных применяются следующие типоразмеры: ДН-9; 10; 11.2; 12.5; 15; 17; 19; 21; 22 – одностороннего всасывания и ДН22  2; ДН24  2; ДН26  2 – двухстороннего всасывания.

Основными узлами дымососов являются (рис. 15.1): рабочее колесо 1, «улитка» – 2, ходовая часть –3, входной патрубок – 4 и направляющий аппарат – 5.

Рабочее колесо включает «крыльчатку», т.е. лопатки и диски, соединяемые сваркой и ступицу, посаженную на вал. Ходовая часть состоит из вала, подшипников качения, расположенных в общем корпусе и упругой муфты. Смазка подшипников – картерная (маслом, находящимся в полостях корпуса). Для охлаждения масла в корпусе подшипников установлен змеевик, по которому циркулирует охлаждающая вода.

Направляющий аппарат имеет 8 поворотных лопаток, соединённых рычажной системой с поворотным кольцом.

Для регулировния дымососов и дутьевых вентиляторов могут применяться двухскоростные электродвигатели.

ЛИТЕРАТУРА

Основная:

1. Поляков В.В., Скворцов Л.С. Насосы и вентиляторы. М. Стройиздат, 1990, 336 с.

Вспомогательная:

2. Шерстюк А.Н. Насосы, вентиляторы, компрессоры. М. “Высшая школа”, 1972, 338 с.

3. Калинушкин М.П. Насосы и вентиляторы: Учеб. пособие для вузов по спец. «Теплогазоснабжение и вентиляция», 6-е изд., перераб. И доп.-М.: Высш.шк., 1987.-176 с.

Методическая литература:

4. Методические указания для проведения лабораторных работ по курсу «Гидравлические и аэродинамические машины». Макеевка, 1999.

Другие похожие работы, которые могут вас заинтересовать.вшм>

4731. БОРЬБА С КОРРУПЦИЕЙ 26 KB
Коррупция - серьезная проблема, с которой столкнулась не только РФ, но и многие другие страны. По уровню коррупции Россия находится на 154-м месте из 178 стран.
2864. Политическая борьба в 20-е - начало 30-х гг. 17.77 KB
Обвинены в диверсиях экспроприациях террор в отношении руководителей компартии в Совгоса в период гражданской войны. Решение ЦК: изолировать лидера партии от работы в интересах здоровья. Пополнение рядов партии парт. Численность партии 735 тыс.
4917. Борьба с преступностью в странах АТР 41.33 KB
Проблемы сотрудничества в борьбе с преступностью в современных международных отношениях. Формы международного взаимодействия в области борьбы с преступностью весьма разнообразны: оказание помощи по уголовным гражданским и семейным делам; заключение и реализация международных договоров и соглашений по борьбе...
2883. Борьба в тылу врага 10.61 KB
Идея организации сопротивления противнику в его тылу интенсивно обсуждалась советскими военными в начале 30-х гг. (Тухачевский, Якир). Однако после «дела военных» = уничтожения верхушки советского генералитета = подготовка и разработка планов организации подпольной и партизанской борьбы прекратилась.
10423. Борьба за устойчивое конкурентное преимущество 108.32 KB
Последние различаясь по физическим качествам уровню обслуживания географическому размещению наличию информации и или субъективному восприятию могут иметь явное предпочтение по крайней мере со стороны одной группы покупателей среди конкурирующих продуктов при данной цене. Как правило в её структуре имеются наиболее влиятельная конкурентная сила которая определяет границу прибыльности отрасли и одновременно имеет важнейшее значение при выработке той или иной стратегии предприятия. Но при этом надо помнить что даже фирмы занимающие...
2871. Политическая борьба в 1930-е годы 18.04 KB
Пригрозил вернуться в будущем к руководству и расстрелять Сталина и сторонников. выступление против Сталина предсовнаркому Сырцова и Ломинадзе. Призвали к свержению Сталина и его клики. В официальных выступлениях мысль о победе генерального курса ЦК на коренную перестройку страны о выдающейся роли Сталина.
3614. Борьба Руси против внешних вторжений в XIII веке 28.59 KB
Образовавшееся на литовских и русских землях Великое княжество Литовское на долгое время сохранило многочисленные политические и экономические традиции Киевской Руси очень успешно оборонялось как от Ливонского ордена так и от монголотатаров. МОНГОЛОТАТАРСКОЕ ИГО Весной 1223 г. Это были монголотатары. К Днепру монголотатары пришли чтобы напасть на половцев хан которых Котян обратился за помощью к своему зятю – галицкому князю Мстиславу Романовичу.
5532. Установка гидроочистки У-1.732 33.57 KB
Автоматизация технологического процесса – это совокупность методов и средств предназначенная для реализации системы или систем позволяющих осуществлять управление производственным процессом без непосредственного участия человека но под его контролем. Одной из важнейших задач автоматизации технологических процессов является автоматическое регулирование имеющее целью поддержание постоянства стабилизацию заданного значения регулируемых переменных или их изменение по заданному во времени...
3372. Смута в России в XVII в.: причины, предпосылки. Кризис политической власти. Борьба с интервентами 27.48 KB
В результате успешно проведенной войны со Швецией России был возвращен ряд городов что укрепило позиции России на Балтике. Активизировались дипломатические отношения России с Англией Францией Германией Данией. заключен договор со Швецией согласно которому шведы были готовы оказать помощь России при условии ее отказа от претензий на побережье Балтики.
4902. Судовая энергетическая установка (СЭУ) 300.7 KB
Допускаемое напряжение на изгиб для чугунных поршней. Напряжение изгиба возникающее в момент действия силы. Напряжение среза. Допускаемое напряжение изгиба и среза: Допускаемое напряжение изгиба для легированной стали: Допускаемое напряжение среза.

Причинами повреждений тягодутьевых машин во время работы могут быть причины механического, электрического и аэродинамического характера.

Причинами механического характера являются:

  • -неуравновешенность рабочего колеса в результате износа или отложений золы (пыли) на лопатках;
  • -износ элементов соединительной муфты: ослабление посадки втулки рабочего колеса на валу или ослабление растяжек крыльчатки;
  • -ослабление фундаментных болтов (при отсутствии контргаек и ненадежных замков против отвертывания гаек) или недостаточная жесткость опорных конструкций машин;
  • -ослабление затяжки анкерных болтов корпусов подшипников вследствие установки под ними при центровке некалиброванных прокладок;
  • -неудовлетворительная центровка роторов электродвигателя и тягодутьевой машины;
  • -чрезмерный нагрев и деформация вала вследствие повышенной температуры дымовых газов.

Причиной электрического характера является большая неравномерность воздушного зазора между ротором и статором электродвигателя.
Причиной аэродинамического характера является различная производительность по сторонам дымососов с двухсторонним всасыванием, которая может возникнуть при одностороннем заносе золой воздухоподогревателя или неправильной регулировке заслонок и направляющих аппаратов.
Во всасывающих карманах и улитках тягодутьевых машин, транспортирующих запыленную среду, наибольшему абразивному износу подвержены обечайки. а также всасывающие воронки улиток. Плоские боковины улиток и карманов изнашиваются в меньшей степени. На осевых дымососах котлов наиболее интенсивно изнашивается броня корпуса в местах расположения направляющих аппаратов и рабочих колес. Интенсивность износа возрастает с увеличением скорости потока и концентрации в нем угольной пыли или частиц золы.

Основными причинами вибрации дымососов и вентиляторов могут быть:

  • а)неудовлетворительная балансировка ротора после ремонта или разбалансировка во время работы в результате неравномерного износа и повреждения лопаток у рабочего колеса или повреждения подшипников;
  • б)неправильная центровка валов машин с электродвигателем или расцентровка их из-за износа муфты, ослабления опорной конструкции подшипников, деформация подкладок под ними, когда после центровки оставляется много тонких некалиброванных прокладок и т.п.;
  • в)повышенный или неравномерный нагрев ротора дымососа, вызвавшего прогиб вала или деформацию рабочего колеса;
  • г) односторонний занос золой воздухоподогревателя и т.п.

Вибрация возрастает при совпадении собственных колебаний машины и опорных конструкций (резонанс), а также при недостаточной жесткости конструкций и ослаблении фундаментных болтов. Возникшая вибрация может повлечь за собой ослабление болтовых соединений и пальцев муфты, шпонок, нагревание и ускоренный износ подшипников, обрыв болтов крепления корпусов подшипников, станины и разрушение фундамента и машины.
Предупреждение и устранение вибрации тягодутьевых машин требует комплексных мероприятий.
Во время приема - сдачи смены прослушивают дымососы и вентиляторы в работе, проверяют отсутствие вибрации, ненормального шума, исправность крепления к фундаменту машины и электродвигателя, температуру их подшипников, работу соединительной муфты. Такая же проверка производится при обходе оборудования во время смены. При обнаружении дефектов, угрожающих аварийной остановкой, сообщают старшему по смене для принятия необходимых мер и усиливают наблюдение за машиной.
Вибрации вращающихся механизмов устраняют путем их балансировки и центровки с электроприводом. Перед балансировкой производят необходимый ремонт ротора и подшипников машины.
Основным видом повреждения рабочих колес и кожухов дымососов является абразивный износ при транспортировке запыленной среды из-за больших скоростей и высокой концентрации уноса (золы) в дымовых газах. Наиболее интенсивно изнашиваются основной диск и лопатки в местах их приварки. Абразивный износ рабочих колес с загнутыми вперед лопатками значительно больше, чем колес с лопатками, загнутыми назад. При работе тягодутьевых машин наблюдается также и коррозионный износ рабочих колес при сжигании в топке сернистого мазута.
Зоны износа листовых лопаток необходимо наплавить твердым сплавом. Износ лопаток и дисков роторов дымососов зависит от сорта сжигаемого топлива и качества работы золоуловительных установок. Плохое действие золоуловителей ведет к их интенсивному износу, уменьшает прочность и может стать причиной разбалансировки и вибраций машин, а износ кожухов ведет к неплотностям, пылению и ухудшению тяги.
Снижение интенсивности эрозионного износа деталей достигается ограничением максимальной частоты вращения ротора машины. Для дымососов частота вращения принимается около 700 об/мин, но не более 980.
Эксплуатационными методами уменьшения износа являются: работа с минимальным избытком воздуха в топке, устранение присосов воздуха в топке и газоходах и мероприятия по снижению потерь от механического недожога топлива. Это уменьшает скорости дымовых газов и концентрацию в них золы и уноса.

В тягодутьевых машинах применяются подшипники качения и скольжения. Для подшипников скольжения применяются вкладыши двух конструкций:

  • -самоустанавливающиеся с шаровой и
  • -с цилиндрической (жесткие) опорной поверхностью посадки вкладыша в корпус.

Повреждения подшипников могут быть из-за недосмотра персонала, дефектов их изготовления, неудовлетворительного ремонта и сборки, а особенно -плохой смазки и охлаждения.
Ненормальная работа подшипников определяется по повышению температуры (выше 650С) и характерному шуму или стуку в корпусе.

Основными причинами повышения температуры подшипников являются:

  • -загрязнение, недостаточное количество или вытекание смазки из подшипников, несоответствие смазочного материала условиям работы тягодутьевых машин (слишком густое или жидкое масло), чрезмерное заполнение смазкой подшипников качения;
  • -отсутствие в корпусе подшипника осевых зазоров, необходимых для компенсации температурного удлинения вала;
  • -малый посадочный радиальный зазор подшипника;
  • -малый рабочий радиальный зазор подшипника;
  • -заедание смазочного кольца в подшипниках скольжения при очень высоком уровне масла, которое препятствует свободному вращению кольца, или повреждение кольца;
  • -износ и повреждение подшипников качения:
    • дорожки и тела качения выкрашиваются,
    • трещина на кольцах подшипника,
    • внутреннее кольцо подшипника неплотно сидит на валу,
    • смятие и поломка роликов, сепараторов, что сопровождается иногда стуком в подшипнике;
  • -нарушение охлаждения подшипников, имеющих водяное охлаждение;
  • -разбалансировка рабочего колеса и вибрация, резко ухудшающие условия нагрузки подшипников.

К дальнейшей работе подшипники качения становятся непригодными из-за коррозии, абразивного и усталостного износа, разрушения сепараторов. Быстрый износ подшипника происходит при наличии отрицательного или нулевого рабочего радиального зазора вследствие разности температур вала и корпуса, неправильно выбранного начального радиального зазора или неверно выбранной и выполненной посадки подшипника на вал или в корпус и др.

Во время монтажа или ремонта тягодутьевых машин нельзя применять подшипники, если у них обнаружены:

  • -трещины на кольцах, сепараторах и телах качения;
  • -забоины, вмятины и шелушение на дорожках и телах качения;
  • -сколы на кольцах, рабочих бортах колец и телах качения;
  • -сепараторы с разрушенными сваркой и клепкой, с недопустимыми провисанием и неравномерным шагом окон;
  • -цвета побежалости на кольцах или телах качения;
  • -продольные лыски на роликах;
  • -чрезмерно большой зазор или тугое вращение;
  • -остаточный магнетизм.

При выявлении указанных дефектов подшипники следует заменить новыми.

Чтобы при демонтаже не повредить подшипники качения, необходимо соблюдать следующие требования:

  • -усилие должно передаваться через кольцо;
  • -осевое усилие должно совпадать с осью вала или корпуса;
  • -удары по подшипнику категорически запрещены, их следует передавать через выколотку из мягкого металла.

Применяют прессовый, термический и ударный способы монтажа и демонтажа подшипников. При необходимости можно применять указанные способы в сочетании.

При разборке подшипниковых опор контролируют:

  • -состояние и размеры посадочных поверхностей корпуса и вала;
  • -качество установки подшипника,
  • -центровку корпуса относительно вала;
  • -радиальный зазор и осевую игру,
  • -состояние тел качения, сепараторов и колец;
  • -легкость и отсутствие шума при вращении.

Наибольшие потери возникают при размещении в непосредственной близости от выходного патрубка машины какого-либо поворота. Непосредственно за выходным патрубком машины для снижения потерь напора следует устанавливать диффузор. При угле раскрытия диффузора больше 200 ось диффузора должна быть отклонена в сторону вращения рабочего колеса так, чтобы угол между продолжением обечайки машины и наружной стороной диффузора был около 100. При угле раскрытия меньше 200 диффузор следует выполнять симметричным или с наружной стороной, являющейся продолжением обечайки машины. Отклонение оси диффузора в обратную сторону приводит к увеличению его сопротивления. В плоскости, перпендикулярной плоскости рабочего колеса, диффузор выполняется симметричным.
Производительность вентилятора ухудшается при отклонении от проектных углов установки лопаток крыльчатки и при дефектах их изготовления. Необходимо учесть. что при наплавлении твердыми сплавами или усилении лопатки приваркой накладок с целью удлинения срока их службы может произойти ухудшение характеристики дымососа: к таким же последствиям приводит чрезмерный износ и неправильное противоизносное бронирование корпуса дымососа (уменьшение проходных сечений, увеличение внутренних сопротивлений). К дефектам газовоздушного тракта относятся - неплотности, присосы холодного воздуха через обдувочные лючки и места заделки их в обмуровку, лазы в обмуровке котла. неработающие горелки, проходы постоянных обдувочных устройств через обмуровку котла и хвостовые поверхности нагрева, гляделки в топочной камере и запальные отверстия для горелок и т.п.. В результате чего увеличиваются объемы дымовых газов и соответственно сопротивление тракта. Газовое сопротивление увеличивается также при загрязнении тракта очаговыми остатками и при нарушении взаимного расположения змеевиков пароперегревателя и экономайзера (провисания, переплетения и т.п.). Причиной внезапного роста сопротивления может быть обрыв или заклинивание в прикрытом положении заслонки или направляющего аппарата дымососа.
Возникновение неплотности в газовом тракте вблизи дымососа (открытый лаз, поврежденный взрывной клапан и т.п.) ведет к снижению разрежения перед дымососом и увеличению его производительности. Сопротивление тракта до места неплотности падает, так как дымосос работает в большей мере на подсос воздуха из этих мест, где сопротивление значительно меньше, чем в основном тракте, и количество дымовых газов, забираемых им из тракта, снижается.
Характеристика машины ухудшается при увеличенном перетоке газов через зазоры между входным патрубком и рабочим колесом. Нормально диаметр патрубка в свету должен быть на 1-1,5% меньше диаметра входа в рабочее колесо; осевой и радиальный зазоры между кромкой патрубка и входом в колесо не должно превышать 5 мм; смещение осей их отверстий не должно быть больше 2-3 мм.
В эксплуатации необходимо своевременно устранять неплотности в местах прохода валов и у корпусов из-за их износа, в прокладках разъемов и т.п.
При наличии обводного короба дымососа (прямого хода) с неплотной заслонкой - в нем возможен обратный переток выбрасываемых дымовых газов, во всасывающий патрубок дымососа.
Рециркуляция дымовых газов возможна также при установке двух дымососов на котел: через оставленный дымосос - к другому, работающему. При параллельной работе двух дымососов (двух вентиляторов) надо следить за тем, чтобы все время была одинаковой их нагрузка, которую контролируют по показаниям амперметров электродвигателей.

В случае уменьшения производительности и напора во время работы тягодутьевых машин следует проверить:

  • -направление вращения вентилятора (дымососа);
  • -состояние лопаток рабочего колеса (износ и точность наплавки или установки накладок);
  • -по шаблону - правильность установки лопаток в соответствии с их проектным положением и углами входа и выхода (для новых рабочих колес или после замены лопаток);
  • -соответствие рабочим чертежам конфигурации улитки и стен корпуса, языка и зазоров между конфузором; точность установки и полноту открытия заслонок до и после вентилятора (дымососа);
  • -разрежение перед дымососом, напор после него и напор после дутьевого вентилятора и сравнить с прежним;
  • -плотность в местах прохода валов машины, при выявлении неплотности в них и в воздухопроводе устранить ее;
  • -плотность воздухоподогревателя.

Надежность работы тягодутьевых машин в значительной мере зависит от тщательной приемки механизмов, поступающих на монтажную площадку, качества монтажа, профилактического ремонта и правильной эксплуатации, а также от исправности контрольно-измерительных приборов для измерения температуры уходящих газов, температуры нагрева подшипников, электродвигателя и т.д.

Для обеспечения безаварийной и надежной работы вентиляторов и дымососов необходимо:

  • систематически следить за смазкой и температурой подшипников, не допускать загрязнения смазочных масел;
  • заполнять подшипники качения консистентной смазкой не более чем на 0,75, а при больших скоростях тягодутьевого механизма - не более чем на 0,5 объема корпуса подшипника во избежание их нагревания. Уровень масла должен находиться у центра нижнего ролика или шарика при заполнении подшипников качения жидкой смазкой. Масляную ванну подшипников с кольцевой смазкой следует заполнять до красной черты на масломерном стекле, указывающем нормальный уровень масла. С целью удаления избытка масла при переполнении корпуса выше допустимого уровня корпус подшипника должен быть оборудован сливной трубкой;
  • обеспечить непрерывное водяное охлаждение подшипников дымососов;
  • для возможности контроля слив воды, охлаждающей подшипники, должен осуществляться через открытые трубки и сливные воронки.

При разборке и сборке подшипников скольжения, замене деталей многократно контролируются такие операции:

  • а)проверка центровки корпуса по отношению к валу и плотности прилегания нижнего полувкладыша;
  • б)замер верхнего, боковых зазоров вкладыша и натяга вкладыша крышкой корпуса;
  • в)состояние баббитовой поверхности заливки вкладыша (определяется простукиванием латунным молотком, звук должен быть чистым). Общая площадь отслаивания допускается не более 15% при отсутствии трещин в местах отслаивания. В районе упорного бурта отслаивание не допускается. Разность диаметров по различным сечениям вкладыша - не более 0,03 мм. Во вкладышах подшипника на рабочей поверхности проверяют отсутствие зазоров, рисок, забоин, раковин, пористостей, инородных включений. Эллиптичность у смазочных колец разрешается не более О,1 мм, а неконцентричность в местах разъема - не более 0,05 мм.

Обслуживающему персоналу следует:

  • следить по приборам, чтобы температура уходящих газов не превышала расчетную;
  • производить по графику осмотр и текущий ремонт дымососов и вентиляторов со сменой масла и промывкой подшипников, если это требуется, устранением неплотностей, проверкой правильности и легкости открытия шиберов и направляющих аппаратов, их исправности и т.д.;
  • закрывать всасывающие отверстия дутьевых вентиляторов сетками
  • производить тщательную приемку запасных частей, поступающих для замены во время капитального и текущего ремонтов тягодутьевых машин (подшипников, валов, крыльчаток и т.п.);
  • производить опробование тягодутьевых машин после монтажа и капитального ремонта, а также приемку отдельных узлов в процессе монтажа (фундаменты, опорные рамы и т.п.);
  • не допускать приемку в эксплуатацию машин с вибрацией подшипников 0,16 мм при частоте вращения 750 об/мин, 0,13 мм - при 1000 об/мин и 0,l мм- при 1500 об/мин.

8.1.1 Общие положения

На рисунках 1 - 4 показаны некоторые возможные точки и направления измерений на каждом подшипнике вентилятора. Значения, приведенные в таблице 4, относятся к измерениям в направлении, перпендикулярном к оси вращения. Число и местоположение точек измерений как для заводских испытаний, так и для измерений на месте эксплуатации определяют по усмотрению изготовителя вентиляторов или по соглашению с заказчиком. Рекомендуется проводить измерения на подшипниках вала колеса вентилятора (крыльчатки). Если это невозможно, датчик следует установить в таком месте, где обеспечена максимально короткая механическая связь между ним и подшипником. Датчик не следует закреплять на безопорных панелях, корпусе вентилятора, элементах ограждения или других местах, не имеющих прямой связи с подшипником (результаты таких измерений могут быть использованы, но не для оценки вибрационного состояния вентилятора, а для получения информации о вибрации, передаваемой к воздуховоду или на основание, - см. ГОСТ 31351 и ГОСТ ИСО 5348.

Рисунок 1 - Расположение трехкоординатного датчика для горизонтально установленного осевого вентилятора

Рисунок 2 - Расположение трехкоординатного датчика для радиального вентилятора одностороннего всасывания

Рисунок 3 - Расположение трехкоординатного датчика для радиального вентилятора двустороннего всасывания

Рисунок 4 - Расположение трехкоординатного датчика для вертикально установленного осевого вентилятора

Измерения в горизонтальном направлении следует проводить под прямым углом к оси вала. Измерения в вертикальном направлении должны быть проведены под прямым углом к горизонтальному направлению измерений и под прямым углом к валу вентилятора. Измерения в продольном направлении следует проводить в направлении, параллельном оси вала.

8.1.2 Измерения с использованием датчиков инерционного типа

Все значения вибрации, указанные в настоящем стандарте, относятся к измерениям, выполненным с помощью датчиков инерционного типа, сигнал которых воспроизводит движение корпуса подшипника.

Применяемые датчики могут быть либо акселерометрами, либо датчиками скорости. Особое внимание следует уделить правильному креплению датчиков: без зазоров по опорной площадке, качаний и резонансов. Размер и масса датчиков и системы крепления не должны быть чрезмерно большими, чтобы не вносить существенных изменений в измеренную вибрацию. Суммарная погрешность, обусловленная способом крепления датчика вибрации и калибровкой измерительного тракта, не должна превышать ±10 % значения измеряемой величины.

8.1.3 Измерения с использованием датчиков бесконтактного типа

По соглашению между пользователем и изготовителем могут быть установлены требования к предельным значениям перемещения вала (см. ГОСТ ИСО 7919-1) внутри подшипников скольжения. Соответствующие измерения могут быть проведены с помощью датчиков бесконтактного типа.

В этом случае измерительная система определяет перемещение поверхности вала относительно корпуса подшипника. Очевидно, что допустимая амплитуда перемещений не должна превышать значения зазора в подшипнике. Значение внутреннего зазора зависит от размера и типа подшипника, нагрузки (радиальной или осевой), направления измерений (отдельные конструкции подшипников имеют отверстие эллиптического типа, для которого зазор в горизонтальном направлении больше, чем в вертикальном). Многообразие факторов, которые следует принимать во внимание, не позволяет установить единые предельные значения перемещения вала, однако некоторые рекомендации представлены в виде таблицы 3. Значения, приведенные в этой таблице, представляют собой процентное отношение к общему значению радиального зазора в подшипнике в каждом направлении.

Таблица 3 - Предельное относительное перемещение вала внутри подшипника

Максимальное рекомендуемое перемещение, проценты значения зазора1) (вдоль любой оси)
Пуск в эксплуатацию/Удовлетворительное состояние Менее 25 %
Предупреждение +50 %
Останов +70 %
1) Значения радиального и осевого зазоров для конкретного подшипника следует узнавать у его поставщика.

Приведенные значения даны с учетом «ложных» перемещений поверхности вала. Эти «ложные» перемещения появляются в результатах измерений вследствие того, что на эти результаты влияют помимо вибрации вала также его механические биения, если вал погнут или имеет некруглую форму. При использовании датчика бесконтактного типа вклад в результат измерений дадут также электрические биения, определяемые магнитными и электрическими свойствами материала вала в точке измерений. Считают, что при пуске вентилятора в эксплуатацию и его последующей нормальной работе размах суммы механических и электрических биений в точке измерений не должен превышать большего из двух значений: 0,0125 мм или 25 % измеренного значения перемещения. Биения определяют в процессе медленного проворачивания вала (на скорости от 25 до 400 мин-1), когда действие на ротор сил, вызванных дисбалансом, незначительно. Для того чтобы уложиться в установленный допуск по биениям, может потребоваться дополнительная обработка вала. Датчики бесконтактного типа, по возможности, следует закреплять непосредственно в корпусе подшипника.

Приведенные предельные значения применимы только для вентилятора, работающего в номинальном режиме. Если конструкция вентилятора предусматривает его работу от привода с переменной скоростью вращения, то на других скоростях возможны более высокие уровни вибрации вследствие неизбежного влияния резонансов.

Если в вентиляторе предусмотрена возможность изменения положения лопастей относительно потока воздуха у входного отверстия, приведенные значения следует применять для условий работы с максимально открытыми лопастями. Следует учесть, что срыв воздушного потока, особенно заметный при больших углах раскрытия лопасти относительно входного воздушного потока, может приводить к повышенным уровням вибрации.

Вентиляторы, устанавливаемые по схемам В и D (см. ГОСТ 10921), следует испытывать с всасывающими и (или) нагнетательными воздуховодами, длина которых превышает их диаметр не менее чем в два раза (см. также приложение С).

Предельная вибрация вала (относительно подшипниковой опоры):

Пуск/удовлетворительное состояние: (0,25´0,33 мм) = 0,0825 мм (размах);

Уровень предупреждения: (0,50´0,33 мм) = 0,165 мм (размах);

Уровень останова: (0,70´0,33 мм) = 0,231 мм (размах).

Сумма механического и электрического биений вала в точке измерений вибрации:

b) 0,25´0,0825 мм = 0,0206 мм.

Большее из двух значений составляет 0,0206 мм.

8.2 Система опоры вентилятора

Вибрационное состояние вентиляторов после их установки определяют с учетом жесткости опоры. Опору считают жесткой, если первая собственная частота системы «вентилятор - опора» превышает скорость вращения. Обычно при установке на бетонные фундаменты больших размеров опору можно считать жесткой, а при установке на виброизоляторы - податливой. Стальная рама, на которую часто устанавливают вентиляторы, может относиться к любому из двух указанных типов опоры. В случае сомнений в отношении типа опоры вентилятора можно выполнить расчеты или провести испытания для определения первой собственной частоты системы. В некоторых случаях опору вентилятора следует рассматривать как жесткую в одном направлении и податливую в другом.

8.3 Пределы допустимой вибрации вентиляторов при испытаниях в заводских условиях

Предельные уровни вибрации, приведенные в таблице 4, применяют к вентиляторам в сборе. Они относятся к измерениям виброскорости в узкой полосе частот на опорах подшипников для частоты вращения, применяемой при испытаниях в заводских условиях.

Таблица 4 - Предельные значения вибрации при испытаниях в заводских условиях

Категория вентилятора
Жесткая опора Податливая опора
BV-1 9,0 11,2
BV-2 3,5 5,6
BV-3 2,8 3,5
BV-4 1,8 2,8
BV-5 1,4 1,8

Примечания

1 В приложении А указаны правила преобразования единиц виброскорости в единицы виброперемещения или виброускорения для вибрации в узкой полосе частот.

2 Значения в настоящей таблице относятся к номинальной нагрузке и номинальной частоте вращения вентилятора, работающего в режиме с открытыми лопатками входного направляющего аппарата. Предельные значения для других условий нагружения должны быть согласованы между изготовителем и заказчиком, но рекомендуется, чтобы они не превышали табличных значений более чем в 1,6 раза.

8.4 Пределы допустимой вибрации вентиляторов при испытаниях на месте эксплуатации

Вибрация любого вентилятора на месте эксплуатации зависит не только от качества его балансировки. Влияние будут оказывать, например, факторы, связанные с установкой, такие как масса и жесткость системы опоры. Поэтому изготовитель вентиляторов, если только это не оговорено контрактом, не несет ответственности за уровень вибрации вентилятора на месте его эксплуатации.

Таблица 5 - Предельные значения вибрации на месте эксплуатации

Вибрационное состояние вентилятора Категория вентилятора Предельное с.к.з. виброскорости, мм/с
Жесткая опора Податливая опора
Пуск в эксплуатацию BV-1 10 11,2
BV-2 5,6 9,0
BV-3 4,5 6,3
BV-4 2,8 4,5
BV-5 1,8 2,8
Предупреждение BV-1 10,6 14,0
BV-2 9,0 14,0
BV-3 7,1 11,8
BV-4 4,5 7,1
BV-5 4,0 5,6
Останов BV-1 -1) -1)
BV-2 -1) -1)
BV-3 9,0 12,5
BV-4 7,1 11,2
BV-5 5,6 7,1

1) Уровень останова для вентиляторов категорий BV-1 и BV-2 устанавливают на основе долговременного анализа результатов измерений вибрации.

Вибрация новых принимаемых в эксплуатацию вентиляторов не должна превышать уровень «пуск в эксплуатацию». По мере эксплуатации вентилятора следует ожидать повышения уровня его вибрации вследствие процессов износа и кумулятивного эффекта влияющих факторов. Такое повышение вибрации является, в общем, закономерным и не должно вызывать тревоги, пока не достигнет уровня «предупреждение».

По достижении вибрацией уровня «предупреждение» необходимо исследовать причины повышения вибрации и определить меры по ее снижению. Работа вентилятора в таком состоянии должна быть под постоянным наблюдением и ограничена временем, требуемым для определения мер по устранению причин повышенной вибрации.

Если уровень вибрации достигает уровня «останов», меры по устранению причин повышенной вибрации должны быть приняты незамедлительно, в противном случае вентилятор должен быть остановлен. Задержка с приведением уровня вибрации к допустимому уровню может повлечь за собой повреждение подшипников, появление трещин в роторе и в местах сварки корпуса вентилятора и, в конечном итоге, разрушение вентилятора.

При оценке вибрационного состояния вентилятора следует контролировать изменения уровня вибрации со временем. Внезапное изменение уровня вибрации свидетельствует о необходимости немедленного осмотра вентилятора и принятия мер по его техническому обслуживанию. При контроле изменения вибрации не следует принимать во внимание переходные процессы, вызванные, например, заменой смазки или процедурами технического обслуживания.