Как посчитать математическое ожидание. Случайные величины

Математическое ожидание и дисперсия - чаще всего применяемые числовые характеристики случайной величины. Они характеризуют самые важные черты распределения: его положение и степень разбросанности. Во многих задачах практики полная, исчерпывающая характеристика случайной величины - закон распределения - или вообще не может быть получена, или вообще не нужна. В этих случаях ограничиваются приблизительным описанием случайной величины с помощью числовых характеристик.

Математическое ожидание часто называют просто средним значением случайной величины. Дисперсия случайной величины - характеристика рассеивания, разбросанности случайной величины около её математического ожидания.

Математическое ожидание дискретной случайной величины

Подойдём к понятию математического ожидания, сначала исходя из механической интерпретации распределения дискретной случайной величины. Пусть единичная масса распределена между точками оси абсцисс x 1 , x 2 , ..., x n , причём каждая материальная точка имеет соответствующую ей массу из p 1 , p 2 , ..., p n . Требуется выбрать одну точку на оси абсцисс, характеризующую положение всей системы материальных точек, с учётом их масс. Естественно в качестве такой точки взять центр массы системы материальных точек. Это есть среднее взвешенное значение случайной величины X , в которое абсцисса каждой точки x i входит с "весом", равным соответствующей вероятности. Полученное таким образом среднее значение случайной величины X называется её математическим ожиданием.

Математическим ожиданием дискретной случайной величины называется сумма произведений всех возможных её значений на вероятности этих значений:

Пример 1. Организована беспроигрышная лотерея. Имеется 1000 выигрышей, из них 400 по 10 руб. 300 - по 20 руб. 200 - по 100 руб. и 100 - по 200 руб. Каков средний размер выигрыша для купившего один билет?

Решение. Средний выигрыш мы найдём, если общую сумму выигрышей, которая равна 10*400 + 20*300 + 100*200 + 200*100 = 50000 руб, разделим на 1000 (общая сумма выигрышей). Тогда получим 50000/1000 = 50 руб. Но выражение для подсчёта среднего выигрыша можно представить и в следующем виде:

С другой стороны, в данных условиях размер выигрыша является случайной величиной, которая может принимать значения 10, 20, 100 и 200 руб. с вероятностями, равными соответственно 0,4; 0,3; 0,2; 0,1. Следовательно, ожидаемый средний выигрыш равен сумме произведений размеров выигрышей на вероятности их получения.

Пример 2. Издатель решил издать новую книгу. Продавать книгу он собирается за 280 руб., из которых 200 получит он сам, 50 - книжный магазин и 30 - автор. В таблице дана информация о затратах на издание книги и вероятности продажи определённого числа экземпляров книги.

Найти ожидаемую прибыль издателя.

Решение. Случайная величина "прибыль" равна разности доходов от продажи и стоимости затрат. Например, если будет продано 500 экземпляров книги, то доходы от продажи равны 200*500=100000, а затраты на издание 225000 руб. Таким образом, издателю грозит убыток размером в 125000 руб. В следующей таблице обобщены ожидаемые значения случайной величины - прибыли:

Число Прибыль x i Вероятность p i x i p i
500 -125000 0,20 -25000
1000 -50000 0,40 -20000
2000 100000 0,25 25000
3000 250000 0,10 25000
4000 400000 0,05 20000
Всего: 1,00 25000

Таким образом, получаем математическое ожидание прибыли издателя:

.

Пример 3. Вероятность попадания при одном выстреле p = 0,2 . Определить расход снарядов, обеспечивающих математическое ожидание числа попаданий, равное 5.

Решение. Из всё той же формулы математического ожидания, которую мы использовали до сих пор, выражаем x - расход снарядов:

.

Пример 4. Определить математическое ожидание случайной величины x числа попаданий при трёх выстрелах, если вероятность попадания при каждом выстреле p = 0,4 .

Подсказка: вероятность значений случайной величины найти по формуле Бернулли .

Свойства математического ожидания

Рассмотрим свойства математического ожидания.

Свойство 1. Математическое ожидание постоянной величины равно этой постоянной:

Свойство 2. Постоянный множитель можно выносить за знак математического ожидания:

Свойство 3. Математическое ожидание суммы (разности) случайных величин равно сумме (разности) их математических ожиданий:

Свойство 4. Математическое ожидание произведения случайных величин равно произведению их математических ожиданий:

Свойство 5. Если все значения случайной величины X уменьшить (увеличить) на одно и то же число С , то её математическое ожидание уменьшится (увеличится) на то же число:

Когда нельзя ограничиваться только математическим ожиданием

В большинстве случаев только математическое ожидание не может в достаточной степени характеризовать случайную величину.

Пусть случайные величины X и Y заданы следующими законами распределения:

Значение X Вероятность
-0,1 0,1
-0,01 0,2
0 0,4
0,01 0,2
0,1 0,1
Значение Y Вероятность
-20 0,3
-10 0,1
0 0,2
10 0,1
20 0,3

Математические ожидания этих величин одинаковы - равны нулю:

Однако характер распределения их различный. Случайная величина X может принимать только значения, мало отличающиеся от математического ожидания, а случайная величина Y может принимать значения, значительно отклоняющиеся от математического ожидания. Аналогичный пример: средняя заработная плата не даёт возможности судить об удельном весе высоко- и низкооплачиваемых рабочих. Иными словами, по математическому ожиданию нельзя судить о том, какие отклонения от него, хотя бы в среднем, возможны. Для этого нужно найти дисперсию случайной величины.

Дисперсия дискретной случайной величины

Дисперсией дискретной случайной величины X называется математическое ожидание квадрата отклонения её от математического ожидания:

Средним квадратическим отклонением случайной величины X называется арифметическое значение квадратного корня её дисперсии:

.

Пример 5. Вычислить дисперсии и средние квадратические отклонения случайных величин X и Y , законы распределения которых приведены в таблицах выше.

Решение. Математические ожидания случайных величин X и Y , как было найдено выше, равны нулю. Согласно формуле дисперсии при Е (х )=Е (y )=0 получаем:

Тогда средние квадратические отклонения случайных величин X и Y составляют

.

Таким образом, при одинаковых математических ожиданиях дисперсия случайной величины X очень мала, а случайной величины Y - значительная. Это следствие различия в их распределении.

Пример 6. У инвестора есть 4 альтернативных проекта инвестиций. В таблице обобщены данные об ожидаемой прибыли в этих проектах с соответствующей вероятностью.

Проект 1 Проект 2 Проект 3 Проект 4
500, P =1 1000, P =0,5 500, P =0,5 500, P =0,5
0, P =0,5 1000, P =0,25 10500, P =0,25
0, P =0,25 9500, P =0,25

Найти для каждой альтернативы математическое ожидание, дисперсию и среднее квадратическое отклонение.

Решение. Покажем, как вычисляются эти величины для 3-й альтернативы:

В таблице обобщены найденные величины для всех альтернатив.

У всех альтернатив одинаковы математические ожидания. Это означает, что в долгосрочном периоде у всех - одинаковые доходы. Стандартное отклонение можно интерпретировать как единицу измерения риска - чем оно больше, тем больше риск инвестиций. Инвестор, который не желает большого риска, выберет проект 1, так как у него наименьшее стандартное отклонение (0). Если же инвестор отдаёт предпочтение риску и большим доходам в короткий период, то он выберет проект наибольшим стандартным отклонением - проект 4.

Свойства дисперсии

Приведём свойства дисперсии.

Свойство 1. Дисперсия постоянной величины равна нулю:

Свойство 2. Постоянный множитель можно выносить за знак дисперсии, возводя его при этом в квадрат:

.

Свойство 3. Дисперсия случайной величины равна математическому ожиданию квадрата этой величины, из которого вычтен квадрат математического ожидания самой величины:

,

где .

Свойство 4. Дисперсия суммы (разности) случайных величин равна сумме (разности) их дисперсий:

Пример 7. Известно, что дискретная случайная величина X принимает лишь два значения: −3 и 7. Кроме того, известно математическое ожидание: E (X ) = 4 . Найти дисперсию дискретной случайной величины.

Решение. Обозначим через p вероятность, с которой случайная величина принимает значение x 1 = −3 . Тогда вероятностью значения x 2 = 7 будет 1 − p . Выведем уравнение для математического ожидания:

E (X ) = x 1 p + x 2 (1 − p ) = −3p + 7(1 − p ) = 4 ,

откуда получаем вероятности: p = 0,3 и 1 − p = 0,7 .

Закон распределения случайной величины:

X −3 7
p 0,3 0,7

Дисперсию данной случайной величины вычислим по формуле из свойства 3 дисперсии:

D (X ) = 2,7 + 34,3 − 16 = 21 .

Найти математическое ожидание случайной величины самостоятельно, а затем посмотреть решение

Пример 8. Дискретная случайная величина X принимает лишь два значения. Большее из значений 3 она принимает с вероятностью 0,4. Кроме того, известна дисперсия случайной величины D (X ) = 6 . Найти математическое ожидание случайной величины.

Пример 9. В урне 6 белых и 4 чёрных шара. Из урны вынимают 3 шара. Число белых шаров среди вынутых шаров является дискретной случайной величиной X . Найти математическое ожидание и дисперсию этой случайной величины.

Решение. Случайная величина X может принимать значения 0, 1, 2, 3. Соответствующие им вероятности можно вычислить по правилу умножения вероятностей . Закон распределения случайной величины:

X 0 1 2 3
p 1/30 3/10 1/2 1/6

Отсюда математическое ожидание данной случайной величины:

M (X ) = 3/10 + 1 + 1/2 = 1,8 .

Дисперсия данной случайной величины:

D (X ) = 0,3 + 2 + 1,5 − 3,24 = 0,56 .

Математическое ожидание и дисперсия непрерывной случайной величины

Для непрерывной случайной величины механическая интерпретация математического ожидания сохранит тот же смысл: центр массы для единичной массы, распределённой непрерывно на оси абсцисс с плотностью f (x ). В отличие от дискретной случайной величиной, у которой аргумент функции x i изменяется скачкообразно, у непрерывной случайной величины аргумент меняется непрерывно. Но математическое ожидание непрерывной случайной величины также связано с её средним значением.

Чтобы находить математическое ожидание и дисперсию непрерывной случайной величины, нужно находить определённые интегралы . Если дана функция плотности непрерывной случайной величины, то она непосредственно входит в подынтегральное выражение. Если дана функция распределения вероятностей, то, дифференцируя её, нужно найти функцию плотности.

Арифметическое среднее всех возможных значений непрерывной случайной величины называется её математическим ожиданием , обозначаемым или .

Оказывается, что целый ряд практических задач можно решить с помощью немногих характеристик распределения, а знание точной функции распределения случайной величины оказывается необязательным. К таким определяющим характеристикам случайной величины относятся, например, ее среднее и среднее квадратичное значения, а также среднее квадратичное отклонение.

Находить средние значения случайных величин можно из опыта, а также зная функции распределения случайных величин. Рассмотрим, как находить эти средние значения в различных случаях.

Пусть случайная величина может принимать: значения с вероятностью или это значение выпадает раз из

значение с вероятностью или это значение выпадает раз из наконец,

значение с вероятностью или это значение выпадает раз из

Тогда сумма значений случайной величины при испытаниях будет:

Чтобы найти среднее значение случайной величины т. е. значение, приходящееся на одно испытание, нужно сумму разделить на полное число испытаний:

Если мы имеем некоторую среднюю величину найденную по формуле (2.11), то, вообще говоря, при различных значениях полного числа испытаний значения средней величины также будут различными, так как рассматриваемые величины носят случайный характер. Однако при увеличении числа среднее значение данной величины будет стремиться к определенному пределу а. И чем больше будет число испытаний, тем ближе определенное по формуле (2.11), будет приближаться к этому предельному значению:

Последнее равенство представляет собой так называемый закон больших чисел или теорему Чебышева: среднее значение случайной величины будет стремиться к постоянному числу при очень большом числе измерений.

Итак, среднее значение случайной величины равна сумме произведений случайной величины на вероятность ее появления.

Если случайная величина меняется непрерывно, то ее среднее значение можно найти с помощью интегрирования:

Средние величины обладают рядом важных свойств:

1) среднее значение постоянной величины равно самой постоянной величине т. е.

2) среднее значение некоторой случайной величины есть величина постоянная, т. е.

3) среднее значение суммы нескольких случайных величин равно сумме средних значений этих величин, т. е.

4) среднее значение произведения двух взаимно независимых случайных величин равно произведению средних значений каждой из них, т. е.

Распространяя это правило на большее число независимых величин, имеем:

Иногда по тем или иным причинам знание среднего значения случайной величины оказывается недостаточным. В таких случаях ищется не просто среднее значение случайной величины, а среднее значение квадрата этой величины (квадратичное). При этом имеют место аналогичные формулы:

для дискретных значений и

в случае непрерывного изменения случайной величины.

Среднее квадратичное значение случайной величины оказывается всегда положительным и не обращается в нуль.

Часто приходится интересоваться не только средними значениями самой случайной величины, но и с редними значениями некоторых функций от случайной величины.

Например, имея распределение молекул по скоростям, мы можем найти среднюю скорость. Но также нас может интересовать средняя кинетическая энергия теплового движения, являющаяся квадратичной функцией скорости. В таких случаях можно воспользоваться следующими общими формулами, определяющими среднее значение произвольной функции случайной величины для случая дискретного распределения

для случая непрерывного распределения

Для нахождения средних значений случайной величины или функции от случайной величины с помощью ненормированной функции распределения пользуются формулами:

Здесь везде интегрирование производится по всей области возможных значений случайной величины

Отклонение от средних. В ряде случаев знание среднего и среднего квадратичного значения случайной величины оказывается недостаточным для характеристики случайной величины. Интерес представляет также распределение случайной величины около своего среднего значения. Для этого исследуется отклонение случайной величины от среднего значения.

Однако, если мы возьмем среднее отклонение случайной величины от ее среднего значения т. е. среднее значение чисел:

то получим, как в случае дискретного, так и в случае непрерывного распределения, нуль. Действительно,

Иногда можно находить среднее значение модулей отклонений случайной величины от среднего значения, т. е. величину:

Однако вычисления с абсолютными значениями часто сложны, а иногда и невозможны.

Поэтому гораздо чаще для характеристики распределения случайной величины около своего среднего значения используют так называемое среднее квадратичное отклонение или средний квадрат отклонения. Средний квадрат отклонения иначе называют дисперсией случайной величины. Дисперсия определяется по формулам:

которые преобразуются к одному виду (см. задачи 5, 9).

где величина представляет квадрат отклонения случайной величины от ее среднего значения.

Квадратный корень из дисперсии случайной величины называется средним квадратичным отклонением случайной величины, а для физических величин - флуктуацией:

Иногда вводится относительная флуктуация, определяемая по формуле

Таким образом, зная закон распределения случайной величины, можно определить все интересующие нас характеристики случайной величины: среднее значение, среднее квадратичное, среднее значение произвольной функции от случайной величины, средний квадрат отклонения или дисперсию и флуктуацию случайной величины.

Поэтому одной из основных задач статистической физики является отыскание законов и функций распределения тех или иных физических случайных величин и параметров в различных физических системах.

Математическое ожидание. Математическим ожиданием дискретной случайной величины Х , принимающей конечное число значений х i с вероятностями р i , называется сумма:

Математическим ожиданием непрерывной случайной величины Х называется интеграл от произведения ее значений х на плотность распределения вероятностей f (x ):

(6б )

Несобственный интеграл (6б ) предполагается абсолютно сходящимся (в противном случае говорят, что математическое ожидание М (Х ) не существует). Математическое ожидание характеризует среднее значение случайной величины Х . Его размерность совпадает с размерностью случайной величины.

Свойства математического ожидания:

Дисперсия. Дисперсией случайной величины Х называется число:

Дисперсия является характеристикой рассеяния значений случайной величины Х относительно ее среднего значения М (Х ). Размерность дисперсии равна размерности случайной величины в квадрате. Исходя из определений дисперсии (8) и математического ожидания (5) для дискретной случайной величины и (6) для непрерывной случайной величины получим аналогичные выражения для дисперсии:

(9)

Здесь m = М (Х ).

Свойства дисперсии:

Среднее квадратичное отклонение:

(11)

Так как размерность среднего квадратичного отклонения та же, что и у случайной величины, оно чаще, чем дисперсия, используется как мера рассеяния.

Моменты распределения. Понятия математического ожидания и дисперсии являются частными случаями более общего понятия для числовых характеристик случайных величин – моментов распределения . Моменты распределения случайной величины вводятся как математические ожидания некоторых простейших функций от случайной величины. Так, моментом порядка k относительно точки х 0 называется математическое ожидание М (Х х 0 )k . Моменты относительно начала координат х = 0 называются начальными моментами и обозначаются:

(12)

Начальный момент первого порядка есть центр распределения рассматриваемой случайной величины:

(13)

Моменты относительно центра распределения х = m называются центральными моментами и обозначаются:

(14)

Из (7) следует, что центральный момент первого порядка всегда равен нулю:

Центральные моменты не зависят от начала отсчета значений случайной величины, так как при сдвиге на постоянное значение С ее центр распределения сдвигается на то же значение С , а отклонение от центра не меняется: Х m = (Х С ) – (m С ).
Теперь очевидно, что дисперсия – это центральный момент второго порядка :

Асимметрия. Центральный момент третьего порядка:

(17)

служит для оценки асимметрии распределения . Если распределение симметрично относительно точки х = m , то центральный момент третьего порядка будет равен нулю (как и все центральные моменты нечетных порядков). Поэтому, если центральный момент третьего порядка отличен от нуля, то распределение не может быть симметричным. Величину асимметрии оценивают с помощью безразмерного коэффициента асимметрии :

(18)

Знак коэффициента асимметрии (18) указывает на правостороннюю или левостороннюю асимметрию (рис. 2).


Рис. 2. Виды асимметрии распределений.

Эксцесс. Центральный момент четвертого порядка:

(19)

служит для оценки так называемого эксцесса , определяющего степень крутости (островершинности) кривой распределения вблизи центра распределения по отношению к кривой нормального распределения. Так как для нормального распределения, то в качестве эксцесса принимается величина:

(20)

На рис. 3 приведены примеры кривых распределения с различными значениями эксцесса. Для нормального распределения Е = 0. Кривые, более островершинные, чем нормальная, имеют положительный эксцесс, более плосковершинные – отрицательный.


Рис. 3. Кривые распределения с различной степенью крутости (эксцессом).

Моменты более высоких порядков в инженерных приложениях математической статистики обычно не применяются.

Мода дискретной случайной величины – это ее наиболее вероятное значение. Модой непрерывной случайной величиныназывается ее значение, при котором плотность вероятности максимальна (рис. 2). Если кривая распределения имеет один максимум, то распределение называется унимодальным . Если кривая распределения имеет более одного максимума, то распределение называется полимодальным . Иногда встречаются распределения, кривые которых имеют не максимум, а минимум. Такие распределения называются антимодальными . В общем случае мода и математическое ожидание случайной величины не совпадают. В частном случае, для модального , т.е. имеющего моду, симметричного распределения и при условии, что существует математическое ожидание, последнее совпадает с модой и центром симметрии распределения.

Медиана случайной величины Х – это ее значение Ме , для которого имеет место равенство: т.е. равновероятно, что случайная величина Х окажется меньше или больше Ме . Геометрически медиана – это абсцисса точки, в которой площадь под кривой распределения делится пополам (рис. 2). В случае симметричного модального распределения медиана, мода и математическое ожидание совпадают.

Средние значения случайных величин

Предположим, что Х – дискретная случайная величина, которая в результате эксперимента принимала значения x 1 , x 2 ,…, x n с вероятностями p 1 , p 2 ,…, p n , . Тогда средним значением или математическим ожиданием величины X называется сумма , т.е. средневзвешенное значение величины Х, где весами служат вероятности p i .

Пример . Определить среднее значение ошибки регулирования e, если на основании большого числа опытов установлено, что вероятность ошибки р i равна:

e, % 0,1 0,15 0,2 0,25 0,3
р i 0,2 0,2 0,3 0,15 0,15

1. M [e] = 0,1×0,2 + 0,15×0,2 + 0,2×0,3 + 0,25×0,15 + 0,3×0,15 =

В том случае, если g(Х ) является функцией X (причем вероятность того, что X = x i равна p i ), то среднее значение функции определяется как

Предположим, что X – случайная величина с непрерывным распределением и характеризуется плотностью вероятности j(x ). Тогда вероятность того, что X заключена между x и x + Dх :

Величина X при этом приближенно принимает значение x . В пределе при Dx ® 0, можно предположить, что приращение Dx численно равно дифференциалу dx .

Произведя замену Dx = dх , получаем точную формулу для расчета среднего значения Х :

Аналогично для g(Х ):

Как правило, недостаточно бывает знать только среднее значение (математическое ожидание) случайной величины. Для оценки меры случайности величины (для оценки разброса конкретных значений X относительно математического ожидания M [X ]) вводится понятие дисперсии случайной величины. Дисперсия – среднее значение квадрата отклонения каждого конкретного значения X от математического ожидания. Чем больше дисперсия , тем больше случайности разброса величины от математического ожидания. Если случайная величина дискретная, то

Для непрерывной случайной величины дисперсию можно записать аналогично:

Дисперсия хорошо описывает разброс величины, но при этом есть один недостаток: размерность не соответствует размерности X . Чтобы избавиться от этого недостатка, часто в конкретных приложениях рассматривают не , а положительное значение , которое называется средним квадратическим отклонением .

1.3.2.1. Свойства математического ожидания

1. Математическое ожидание неслучайной величины равно самой этой величине M [C ] = C .

2. Неслучайный множитель С можно выносить за знак математического ожидания M [CX ] = CM [X ].

3. Математическое ожидание суммы случайных величин равно сумме математических ожиданий этих случайных величин.

4. Математическое ожидание произведения независимых случайных величин равно произведению математических ожиданий этих величин (условие независимости случайных величин).

1.3.2.2. Свойства дисперсии

1. Дисперсия неслучайной величины С равна нулю: D [C ]=0.

2. Дисперсия произведения неслучайного множителя С на случайную величину равна произведению С 2 на дисперсию случайной величины.

3. Дисперсия суммы независимых случайных величин X 1 и X 2 равна сумме дисперсий слагаемых

1.3.3. Моменты случайной величины

Пусть Х – непрерывная случайная величина. Если n – целое положительное число, а функция x n интегрируема на интервале (–¥; +¥), то среднее значение

n = 0, 1,…, n

называется начальным моментом порядка n случайной величины X .

Очевидно, что момент нулевого порядка

,