Маркировка заземления. Цветовая маркировка заземляющих проводников

Как известно, правильно выполненное соединение корпуса электрического оборудования с контуром заземления, напрямую влияет на безопасность его эксплуатации. Заземление радио и электронного оборудования зачастую является важным фактором его правильной работы. Именно поэтому символ обозначающий заземление – наверное, самый распространённый знак в электротехнике и электронике. Он встречается на корпусах оборудования, специальных заземляющих шинах в производственных цехах и электроподстанциях, его нередко можно встретить и на радиоэлектронных схемах, а также схемах связи.

Знак заземления, нанесенный на корпус электрооборудования

Основное назначение знака заземления – информирование о месте соединения оборудования с «землёй», то есть заземляющим контуром. Как правило, символ заземления наносится возле шпильки, к которой непосредственно прикручивается заземляющая шина или заземляющий проводник. Также он может наноситься возле специальной клеммы или на самой клемме. Размеры этого знака пропорциональны размерам устройства, то есть, он должен быть без труда различим на оборудовании и чётко указывать на точку заземления.

Способы нанесение знака на оборудование

Принято считать, что все места подключения оборудования к заземляющему контуру должны иметь оговоренное ГОСТом условное обозначение. В большинстве случаев знак наносится на оборудование на заводе-изготовителе и имеет рельефную поверхность. Знаки, нанесённые на заводе, могут иметь как выпуклую, так и вдавленную структуру. Чаще такие знаки отливаются вместе с металлическим или пластмассовым корпусом оборудования, реже выпрессовываются.

При любом из этих вариантов, знаки подлежат дополнительной окраске, дабы более наглядно выделяться на корпусе. Сейчас популярно наклеивание знака заземления с помощью специальных клейких составов, или липкой ленты, это достаточно простой способ. Применение клеящихся символов заземления не противоречит ГОСТ, и может быть выполнено уже после транспортировки, к тому же такие знаки легко обновлять и заменять.

Государственный Стандарт 21130-75 чётко оговаривает параметры наносимого обозначения заземления на металлические или пластмассовые корпуса методом литья.


Размеры знака заземления, выполняемого методом литья

Подробная расшифровка размеров приводится в таблице.

Типовые размеры для вышеприведённого знака

b D H H 1 h r
0,7 10 5 3,5 2,5 0,35
1,2 16 8 6,0 4,0 0,6
1,4 20 10 7,0 5,0 0,7
1,8 25 14 9,0 5,5 0,9
3,0 40 22 15,0 9,0 1,5
3,5 45 28 17,5 8,5 1,75
4,0 50 30 20,0 10,0 2,0
7,0 90 50 35,0 20,0 3,5

Этот способ нанесения маркировки получил широкую популярность ещё с конца XIX века и активно применяется на современном оборудовании, имеющем как большие, так и малые габариты. Аналогично должен выглядеть знак соединения с заземляющим контуром, выполненный методом штамповки цветного или чёрного металла. Данный способ удобен для производителя, значок наносится в процессе изготовления корпуса, что позволяет избежать дополнительных манипуляций.

Нанесение условного обозначения заземления ударным способом на корпус электрооборудования чаще также выполняется на заводе-изготовителе, но и не исключено его применение непосредственно по месту установки изделия.

Чаще ударным способом наносят маркировку на малогабаритном оборудовании, корпуса которого изготовлены из чёрного или цветного металла.

Требования ГОСТ 21130-75 для «ударных» символов заземления несколько иные, чем для знаков, выполненных литьём. Основные размеры таких знаков изображены на рисунке ниже.


Знак присоединения к «земле», выполняемый ударным способом

Типовые размеры для вышеприведённого знака

D b H H 1 h r
±IT1,5/2
14 1,2 8 6,0 2,5 0,6
18 1,4 10 7,0 5,0 0,7
25 1,8 14 9,0 5,5 0,9

Размеры в Таблицах указаны в миллиметрах.

В обоих случаях окружность вокруг знака заземления, имеющая диаметр D, окрашивается в цвет, отличный от основного цвета изделия, как правило, это жёлтый или чёрный цвет.

В настоящее время для обозначения мест соединения с контуром защитного заземления, соответствующий знак может наноситься методом наклеивания. Это либо отпечатывание знака на клейкой бумаге, либо нанесение символа на ламинированный картон с последующим его наклеиванием на оборудование.


Знак, нанесённый на клейкое основание

Размеры такого значка должны также соответствовать ГОСТ и быть пропорциональны оборудованию. Применение такого вида знаков имеет ряд преимуществ, главное из которых – лёгкость нанесения и простота обновления изношенных знаков даже в труднодоступных местах и на изделиях с небольшими габаритами. Технология изготовления символов заземления на клейкой основе предусматривает применение высококачественных клеёв и ламинита, что позволяет их использовать на оборудовании, подверженном действию вибрации и влаги.

Знаки заземления на схемах

На электрических схемах нанесение изображения символа заземления также оговаривается Государственным стандартом. В этом случае пользуются ГОСТ 2.721-74 и Единой Системой Конструкторской Документации. В отличие от знака на корпусе, обозначения заземления на схемах могут отличаться.

Различают три основных символа заземления и знак соединения выводов с корпусом оборудования.


Изображение заземления на электрических схемах

В первом случае, изображённом на рисунке, представлено общее графическое обозначения соединения участка цепи с «землёй». Этот знак довольно распространён в радиоэлектронных схемах, а также им нередко пользуются для обозначения рабочего или измерительного заземления на электрических схемах. В более ранних вариантах, ГОСТ предусматривал только такое обозначение заземления, поэтому на старых схемах его можно встретить и как защитное или бесшумное соединение токоведущих частей с «землёй».

На втором примере изображён знак бесшумного заземления. Несмотря на то что такой вид заземления достаточно редкий, ГОСТ 2.721-74 предусмотрел для него отдельное обозначение. Изображение такого знака требуется, когда среди множества оборудования, подключённого к общим заземляющим магистралям, имеется устройство, требующее отдельного соединения с собственным заземляющим контуром. Иногда бывает, что один и тот же прибор требует подключения измерительного, защитного, рабочего и бесшумного заземления, в таких случаях на схеме можно встретить все три варианта символов.

Третьим вариантом представлено изображение защитного заземления. Поскольку Правила безопасности требуют соединения всех токоведущих частей электрооборудования, нормально находящихся без напряжения, с «землёй» – этот знак самый распространённый на силовых электрических схемах. По своему начертанию он аналогичен знаку, наносимому на корпуса оборудования, и также вписан в окружность.

Кроме вышеприведённых знаков, в электронике часто встречается соединение токоведущей части с корпусом оборудования. Такой вид соединения обозначается четвёртым вариантом значков. Важно заметить, соединение с корпусом не может считаться полноценным заземлением, даже если корпус оборудования впоследствии соединён с заземляющим контуром.

Размеры наносимых на схему значков, должны соответствовать ЕСКД и быть пропорциональны размерам других элементов схемы.

Видео. Правильное заземление

Знание ГОСТ 21130-75 позволяет правильно определить все точки заземления на электрооборудовании и производить периодическое обновление маркировок, что является гарантией безопасной и корректной работы устройств. Без знания требований ГОСТ 2.721-74 практически невозможно прочесть или изобразить электрическую схему. Правильно разбираясь в начертании знаков, можно сразу понять специфику и принцип работы любого электрического или электронного оборудования.

Заземление — тема насколько сложная, настолько и простая. Недаром эта вопросы заземления вызывают множество споров на электрических сайтах и форумах.

Попробуем разобраться, что к чему в этой теме. Выскажу своё мнение, которое иногда будет непопулярным. Кому нужна официальная трактовка — читайте ПУЭ (пункт 1.7). Также в интернете много сайтов и форумов, где подробно изложен вопрос заземления.

Суть заземления

Для чего нужно заземление, если и без него всё прекрасно работает? Более того, в нормальном режиме по проводу защитного заземления ток вообще не протекает.

Тут ключевое слово — «защитное». Кого и от чего защищает заземление? Оно защищает человеческие тела от воздействия электрического тока. А от чего защищает — от того, чтобы опасное напряжение ни в коем случае не появилось на теле человека, и через человека не пошёл ток.

Представим ситуацию. Есть некий электрический прибор, например утюг. Утюг подключается через вот такую вилку.


Читатели постарше отлично помнят такие, они постоянно раскручивались, а прикрутить к ним гибкий провод было мучением.

Корпус утюга частично металлический. Что будет, если вдруг фаза попадет на корпус? В принципе ничего, утюг даже может продолжать работать. Но его корпус будет находиться под потенциалом 220В относительно земли. А поскольку все мы ходим по земле, то притронувшись к металлическому корпусу такого утюга, через нас пойдёт ток.

Но если корпус утюга будет заземлён, то когда фазный провод попадёт на корпус, он соединится с заземлением, и уйдёт в землю. При этом произойдёт фактически короткое замыкание, и выбьет защитный автомат данной линии. А корпус как был под нулевым потенциалом, так и останется.

Иными словами, если фаза вдруг попадёт на корпус прибора, это уже не проблема человека. Это проблема самого прибора и защитного автомата, который должен отключить этот прибор от фазного провода.

Почему защитный автомат отключится? Если фазный провод попадает на защитный (заземляющий) проводник, это равносильно короткому замыканию, то есть максимально возможному току в схеме. И автомат сработает по электромагнитной защите.

То есть, ток в проводе защитного заземления течёт только в момент аварии, в остальное время он бесполезен. Поэтому раньше на нём экономили, и использовали двухпроводную систему питания, в которой есть только ноль и фаза.

Обозначения и перевод названий систем заземления

Существуют TN, TT и IT системы заземления. Система TN, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Первая буква говорит о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя.


Буквы эти взялись из французского, и означают: «Terre» - земля, «Neuter» - нейтраль, «Isole» - изолировать, а также из английского: «Combined» и «Separated» — комбинированный и раздельный.

  • T - провод подключен к земле.
  • N - подключение к нейтрали.
  • I - изолирование.
  • C - объединение функций, соединение рабочего и защитного нулевых проводов.
  • S - раздельное использование во всей сети рабочего и защитного нулевых проводов.

Также в схемах систем заземления используются следующие обозначения:

  • L — Line, Линия, на которой действует фазное напряжение по отношению к нулевому проводу.
  • N — Neutral, рабочий ноль, по которому протекает рабочий ток, равный току в проводе L (для однофазных систем).
  • PE — Protect Earth, защитная земля, провод защитного заземления.
  • PEN — совмещенный рабочий и защитный нулевой проводник.

Краткое описание работы систем заземления

Системы заземления отличаются прежде всего безопасностью. То есть, сколько шансов выжить даёт человеку такая система после того, как на корпусе появилась фаза.

Возникает путаница в терминологией — одну и ту же систему называю и занулением, и заземлением. Википедия предлагает системы TN называть занулением на том основании, что в них заземляющий проводник PEN соединен с нулевым (нейтральным) проводом источника питания. А уже этот провод в трансформаторе — заземлён. Заземляется для того, чтобы не было перекоса фаз.

Подробнее о перекосе фаз, чем он опасен, и как с ним бороться — .

ПУЭ, Библия электрика, говорит, о том же самом, как о системах заземления.

Разница между этими понятиями, по моему мнению, очень зыбкая. По-моему, заземление нужно для поддержания напряжения на уровне потенциала земли на проводе PE и на всех нетоковедущих частях электроустановки, к которым он подключен. А зануление нужно для создания тока короткого замыкания при замыкании фазы на тех же частях электроустановки. В итоге, эффект может быть один — заземленные или зануленные части никогда не окажутся под фазным напряжением, и при этом должен сработать защитный автомат. Это если коротко и своими словами.

Вообще, заземление это более широкое понятие, чем зануление.

Можно сказать, система защиты безопасна настолько, насколько эта точка приближена к источнику напряжения. И опять же, что можно считать потребителем — электрочайник, квартиру, многоэтажный дом, или район города?

Ну а если фаза «прорвётся» на корпус — её должен уничтожить защитный автомат со 100% вероятностью.

Тут важными считаю две вещи:

  1. Весь металл, который не под фазой, должен быть под одним и тем же потенциалом. И желательно, чтобы этот потенциал был равен потенциалу земли. Это — «самый нулевой» потенциал.
  2. Опасное — недоступно. Доступное — безопасно. Бывает, смотришь в квартирные советские щитки или РП и волосы шевелятся.

И ещё, в который раз повторюсь. Всегда рассматривается вероятность обрыва нулевого рабочего проводника. Дело в том, что при таком обрыве на всей схеме прибора, вплоть до точки обрыва нуля, присутствует фазное напряжение. В случае прикосновения ток проходит через нагрузку и через тело человека. Не смотря на сопротивление нагрузки, этот ток остается таким же опасным, как и при прикосновению к на фазному проводу. Ведь сопротивление нагрузки (например, электробытового прибора) всегда гораздо меньше сопротивления тела человека.

Схемы систем заземления

Система TN-C

TN-C — старая, советская система, когда земля просто бралась из нуля непосредственно в самой электроустановке.


Что мы видим на этой схеме? Первое и самое главное. Нейтральная точка генератора или трансформатора подключена к земле (глухо заземлена). Поэтому нейтральная точка трансформатора имеет потенциал земли. А поскольку человек имеет тоже потенциал земли, между телом и нейтральным проводником — нулевая разность потенциалов, и прикосновение к нему безопасно.

Однако, не всё так просто. Повторюсь, что вследствие перекоса фаз, а также падения напряжения на проводе PEN, на нём может присутствовать напряжение, отличное от нулевого. Поэтому провод PEN принудительно «притягивают» к земляному потенциалу через некоторые промежутки по ходу линии.

Земля (то, из чего состоит наша планета) — универсальный и абсолютный ноль по потенциалу. Но если человеку придать потенциал фазного провода, то прикосновение к земле будет смертельно. В то же время, прикосновение к проводу, на котором тот же потенциал, будет безопасным.

Видел документальный фильм, как человек спокойно спускается с вертолета на провод высоковольтной линии и работает там.

В общем всё относительно. Можно упасть с 5-этажного дома насмерть. А можно вообще не повредиться, упав с того же дома. С первой ступеньки первого этажа)

Система TN-C в настоящее время официально запрещена , и может использоваться только в трехфазных системах, где отсутствует перекос фаз, и ток по проводнику PEN (нулевой, он же защитный) в нормальном режиме не протекает. В результате, на этом проводе (а значит, и на корпусе прибора) будет потенциал нуля.

Однако, в старом жилом фонде используется повсеместно из-за своей дешевизны. Дешевизна системы TN-C — это её единственный плюс. Ведь сечение защитного провода PE в однофазной сети должно быть равно сечению фазного провода. А это — удорожание всей электропроводки минимум на треть.

Вообще говоря, в этой системе заземление напрочь отсутствует, и я не совсем понимаю, почему «это» называют системой заземления. Разве что, можно ноль кинуть на корпус, и прибор будет «типа» заземлён.

Да и раньше, когда всю проводку делали по этой системе, практически и не существовало домашних приборов, требующих заземления.

Первыми «ласточками» были стиральные машины, которые бились током. В лучшем случае к ним тянули провод от корпуса подъездного щитка, в худшем — цепляли корпус машины на трубу водопровода или к нулевому проводу.

Нужный эффект, конечно, достигается, но шансы попасть под фазное напряжение значительно возрастают. Основная опасность приходит от того, что возможен обрыв нулевого провода, и тогда все «зануленные» приборы, и также приборы, имеющие импульсные блоки питания, получат на корпусах потенциал фазы.

Как же защититься от поражения электрическим током в системе TN-C? Тут вспоминается УЗО (Устройство Защитного Отключения). Представим — человек коснулся фазного провода. Ток раздваивается — часть (надеюсь, бОльшая) уходит в нулевой проводник, а часть — через тело человека на корпус. Налицо дифференциальная разница (сорри, тавтология) в токах по фазе и нулю, на которую должно сработать УЗО.

Однако, ПУЭ прямо говорит — в системе TN-C применение УЗО запрещено . Почему?

Причина в том, что в данном случае может произойти то, о чем я писал выше. УЗО — это коммутационный аппарат, в котором может по какой-то причине нарушиться контакт PEN — проводника, и под фазное напряжение попадёт весь потребитель. В том числе и корпуса, если они занулены, а именно так и делается «заземление» в системе TN-C.

ПУЭ также говорит, что защитный проводник (в данном случае — PEN) ни при каких условиях не должен разрываться , и должен быть всегда подключен к заземляемому устройству.

Поэтому УЗО можно (и нужно!) применять во всех системах, кроме TN-C .

Вот хороший рисунок, иллюстрирующий ситуацию:


УЗО — применение в различных системах заземления

Я вас так напугал, что по любому возникнет вопрос — как теперь с этим жить?

Отвечаю. Для ухода от этой «нехорошей» системы применяют разделение проводника PEN на N и PE. Причем, это нужно делать как можно дальше от потребителя, и как можно ближе к источнику напряжения.

Таким образом, мы перейдём на гораздо более безопасную систему — TN-C-S , о которой я расскажу чуть ниже.

На практике совмещенный проводник PEN заземляют (повторное заземление) на вводе в здание, и там же разделяют на нейтральный N и защитный PE, которые далее НИГДЕ не должны соединяться.

Другой вариант — переход к системе ТТ , в которой защитный проводник PE делается на основе контура заземления, и нигде не подключен к приходящему PEN. В данном случае PEN превращается в N, поскольку защитный ток ни к коем случает по нему течь не будет.

Заземление в квартире с проводкой TN-C

В квартирах ноль и землю разделять сложнее. По этому поводу постоянно ведутся жаркие споры среди электриков.

Я думаю, что тут есть два приемлемых варианта.

1. Ноль оставить как есть, а провод PE взять с магистрального PEN проводника. Пусть не с самого проводника, а с места, куда он подсоединяется к корпусу этажного щитка. Главное, чтобы наши N и PE были подключены в разных точках. PE — на корпусе, N — на изолированной от корпуса шине, на которую ноли приходит после вводного рубильника или автомата (если они есть) и счетчика. Кстати, так и делали в советские времена при подключении в квартирах электропечей.

2. Провести трехпроводную систему (L, N, PE), но PE никуда не подключать. В результате мы не вносим изменения в этажный щиток (кстати, это запрещено!), а все нетоковедущие части электроприборов, металлических конструкций, труб и т.д. мы подключаем к этому проводнику. И в пределах квартиры у нас благодать! Только важное замечание — на группы розеток должны стоять УЗО на случай попадания фазы на корпус в пределах квартиры.

Всё, теперь по-быстрому пробежимся по другим системам, там всё проще.

Система TN-S

В названии буква третья S. Это значит, что проводники N и PE разделены (Separated) на всём протяжении от подстанции до потребителя.


Эта система заземления наиболее безопасна и предпочтительна, однако применяется только в самых новых электроустановках. Ну а в основном в реалити сейчас применяют систему TN-C-S. То есть старую систему стараются приблизить к новой, отдаляя точку подключения N и PE от потребителя и приближая к источнику питания.

Система TN-С-S

Последние буквы в названии означают, что проводники N и PE после подстанции соединены (Connected) в один провод PEN, а потом, на вводе в здание, разделены.


При попадании фазы на корпус должен сработать защитный автомат по КЗ. При касании токоведущих частей должен сработать УЗО.

Система TT

Terra — Terra. Я уже писал в статье про эту систему, в ней заземляющий провод PE подключается к контуру заземления, и больше никуда. Применяется в основном в частных домах и временных постройках и электроустановках.


Всё замечательно, если также применяются УЗО от прикосновения к токонесущим частям и защитные автоматы от КЗ.

Но есть один минус. Если в других системах своё заземление делать не обязательно, понадеявшись на заземление на подстанции или на столбах, то в данном случае его придётся делать. И делать очень качественно, чтобы в случае замыкания КЗ на землю ток короткого замыкания был достаточен для срабатывания автомата защиты.

То есть возможен вариант, когда при КЗ на корпус потенциал корпуса останется близким к нулю, всё замечательно. Но при этом автомат защиты не выбьет, хотя через него (и через проводку дома) будет идти ток, близкий к максимальному! И проблема может подкрасться с другой стороны…

Система IT

Напоследок расскажу про специфическую систему заземления IT. Во всех других системах используются источники питания (трансформаторы) с глухозаземленной нейтралью. Иначе говоря, нулевой проводник на стороне источника заземлён.

Однако, в системе IT источник питания полностью изолирован от земли — и ноль, и (естественно)) фаза.

В результате по отношению к земле потенциал отсутствует. И при замыкании на землю ничего не произойдёт, ведь ток не потечёт, либо будет пренебрежимо мал.

Я встречал такие системы для питания управляющих цепей в серьезном промышленном оборудовании. Ещё эта система применяется в переносных генераторах и других источниках питания, а также в медицинских учреждениях. Если один из выводов такого источника не заземлить и подключить к нагрузке, он будет работать по системе IT.

Минус такой системы — при замыкании на землю она превратится в TN-C-S с плохим монтажом, и об этом даже можно не узнать, если не проконтролировать. И станет опасной.

На этом заканчиваю тему, спасибо за терпение, жду мнений и вопросов в комментариях.

До выхода в свет седьмого издания ПУЭ характер связи нейтрали генераторов или трансформаторов с заземляющим устройством системы разделялись так:

  • с глухозаземленной нейтралью;
  • с изолированной нейтралью.

В системах с глухозаземленной нейтралью нейтраль силового трансформатора соединялась с контуром заземления сразу же на трансформаторной подстанции. Иногда в этой цепи устанавливался трансформатор тока, в основном же соединение выполнялось жестким шинопроводом. Такими выполнялись все распределительные системы переменного тока напряжением до 1000 В, за исключением электрооборудования шахт и карьеров.

В системах с изолированной нейтралью такого проводника не предусматривалось. В результате относительно земли на ней присутствовал электрический потенциал. Но и нейтрали в них не предусматривалось: обмотки силового трансформатора соединялись в треугольник. Потребители получали электричество по трем проводникам.

Недостатки систем заземления

Что же привело к введению западных стандартов применительно к конструкции систем заземления? Для этого рассмотрим, как они выполнялись.

В системе с глухозаземленной нейтралью сама нейтраль несла в себе, помимо функции проводника нулевого тока, еще и функцию связи заземляемого оборудования с контуром заземления. Поскольку ток в нейтрали не равен нулю, то на ее концах образовывалась разность потенциалов . Присутствие ее относительно сторонних металлических конструкций на безопасность персонала влияла отрицательно.

Но главной бедой, угрожающей безопасности людей, становился обрыв нейтрали . В этом случае ее потенциал зависел от распределения токов по фазам распределительной сети. В неблагоприятном случае потенциал нейтрали относительно земли достигал 380 В. При этом металлоконструкции, присоединенные к нейтральному проводнику с целью заземления, оказывались под тем же потенциалом. Защита на этот режим не реагировала никак, пока в сети не выходил из строя электроприбор из-за превышения напряжения в его фазе.

Еще один недостаток связан с подключением к контуру заземления корпусов малогабаритных приборов. По сути их требовалось присоединить к нейтральному проводнику. Такой способ назывался защитным занулением. Но в случае обрыва нейтрали корпус автоматически оказывался под опасным для жизни потенциалом. Поэтому корпуса люминесцентных светильников на предприятиях предпочитали вовсе не заземлять , из-за чего на них постоянно дежурит опасный для жизни потенциал. Но это –меньшее зло.

Новая классификация систем заземления

В седьмое издание ПУЭ добавлена информация из вновь созданного ГОСТ Р 50571.1-2009, по сути своей являющимся копией стандарта Международной электротехнической комиссии (МЭК). Можно было придумать собственный стандарт, но лучше, если в большинстве стран будет царить единообразие. Ведь в Россию не только поставляется западное электрооборудование, но и целые заводы собираются по иностранным проектам. Чем меньше будет конфликтных ситуаций – тем лучше.

Стандарт касается электроустановок, напряжением до 1000 В. В системах заземления установок выше 1000 В менять нечего.

Первое, на что обращают внимание все, открывающие главу 1.7 ПУЭ – это новые системы обозначения электроустановок в зависимости от режимы работы нейтрали и расположения нулевых проводников.

Первая буква обозначения: «T» или «I» — обозначает соответственно заземленную или изолированную нейтраль электроустановки.

Вторые буквы означают следующее

Защитные и рабочие проводники

Проводники, объединенные раньше в одном понятии «ноль» теперь меняют свое назначение и разделяются на два типа.

Нулевые рабочие проводники служат только для передачи электрической энергии. Использование их как защитных запрещено. Они окрашиваются в голубой цвет, обозначаются буквой N. При этом использование голубого цвета для маркировки других проводников тоже запрещается, чтобы избежать путаницы. Нулевые рабочие проводники не подключаются напрямую к корпусам, а устанавливаются на изоляторах.

Нулевые защитные проводники необходимы для связи корпусов или частей защищаемого оборудования с контуром заземления. Цвет их оболочки состоит из перемежающихся желто-зеленых полос, а буквенное обозначение самих проводников – РЕ. Для предотвращения путаницы запрещено теперь использование комбинации из этих цветов, даже каждого в отдельности. Разработан еще один ГОСТ, регламентирующий цветовую маркировку токопроводов, в котором отразились эти изменения.

Если вспомнить, то заземляющие шины в электроустановках до этого окрашивались в черный цвет. Волею случая этот цвет теперь обозначает один из фазных проводников.

Система TN-C

Система с глухозаземленной нейтралью в сетях до 1000 В осталась неизменной. Никто, естественно, не бросился в срочном порядке перекрашивать шины и добавлять дополнительные проводники в уже сформировавшиеся цепи. Требования ПУЭ и стандартов учитываются только в двух случаях :

  • при проектировании и вводе в эксплуатацию новой электроустановки или части ее;
  • при выполнении модернизации электрооборудования.

Все остальное остается прежним. А для этого прежнего в ПУЭ предусмотрено свое название – система TN-С. Разберемся, что это такое.

Буквы «TN» означают, что это – система с глухозаземленной нейтралью, в которой соединение потребителей с контуром заземления и нейтралью осуществляется при помощи проводников. С ними мы разобрались в предыдущем разделе.

А вот буква «С» означает, что функции этих проводников, рабочего и защитного, совмещены в одном, называемом «совмещенном» . Носит он буквенное обозначение PEN, а окрашивается либо в голубой цвет с желто-зелеными полосами по краям, либо наоборот.

Ничего не изменилось, только цвет теперь не черный. Все, что было создано еще в советские годы, называется теперь системой заземления TN-C. С ней приходится считаться, потому что к новому виду заземления полностью промышленность перейдет еще не скоро.

Система TN-S

А вид этот новый носит название TN-S. Буква “S» как раз означает, что нулевые защитные и рабочие проводники разделены на все протяжении. Разделение это происходит непосредственно на трансформаторной подстанции. Нулевая шпилька трансформатора подключается к шине РЕ, а к ней перемычкой подключается нулевая шина. К шине РЕ сразу же подключают контур заземления подстанции.

Теперь все кабельные линии, отходящие от созданного таким образом распределительного устройства, становятся трехпроводными (если питают однофазную нагрузку) или пятипроводными при питании трехфазного потребителя.

Теперь появляется возможность удобно подключать заземляющие контакты розеток, корпуса светильников, бойлеров, распределительных щитков к контуру заземления. Для этого выделена персональная жила.

На всякий случай упомянем, что, если заземляющий проводник кабеля подключить не к чему, его нельзя ликвидировать . Со временем может потребоваться его использование, поэтому во всех соединительных коробках РЕ-проводники все равно соединяют, а у розеток или светильников – изолируют.

Есть ситуации, когда заземляющие проводники проложены, а подключать их пока не к чему: нет еще контура заземления или не готова часть электроустановки, через которую планируется подключение. В этом случае их соединяют в коробках, но не подключают к абонентам . Некоторые бытовые приборы: светильники, компьютеры, телевизоры, стиральные машины – имеют на входе помехоподавляющие фильтры, использующие корпус для связи с контуром заземления. Опасный потенциал от такого фильтра разбежится по все сети заземления.

Система TN-C-S

Мы уже упоминали реконструируемые электроустановки или части электроустановок, подлежащих модернизации. Их конструкция должна соответствовать новым требованиям ПУЭ. Но для создания системы заземления TN-S реконструировать электроустановку нужно с трансформаторной подстанции. Это потребует серьезных финансовых затрат. Как быть в этом случае?

Для этого используется система заземления TN-C-S, являющаяся комбинацией выше рассмотренных . В части ее, от трансформаторной подстанции, используется TN-C, а на определенном участке защитный и рабочий проводники разделяются, создавая систему TN-S.


Такое разделение устраивают во вводных распределительных устройствах (ВРУ) главных распределительных щитках (ГРЩ) или просто в щитках ввода в здание. Но в этом месте желательно наличие контура повторного заземления , иначе такое разделение не будет безопасным.

Особенное внимание при разделении совмещенного проводника TN-C на защитный и нулевой рабочий обращают на его точку подключения. Проводник PEN при переходе подключается к шине РЕ . Мотивация этого такова. Между шинами N и РЕ при переходе на систему TN-S устанавливается перемычка. Если подключить PEN к шине N, то при обрыве перемычки ничего видимого не произойдет. Все защитные проводники, подключенные к распределительному устройству, потеряют связь с контуром заземления. И никто ничего не заметит, пока не произойдет беда.

При подключении PEN-проводника к шине РЕ и обрыве перемычки произойдет тот же эффект, что был описан ранее в случае обрыва нуля. В электроустановке установится аварийный режим, который вряд ли заметят. С одной разницей: соединение корпусов электрооборудования с контуром заземления не исчезнет, и люди не пострадают.

Система IT

Эта система применяется на горных выработках: карьерах, шахтах. Особенности эксплуатации электрооборудования на этих предприятиях таковы, что получить качественного контура заземления там не представляется возможным.


Нейтраль трансформатора там все-таки заземляется, но через контрольно-измерительные приборы, выполняющие функцию защиты от утечки. В случае ее возникновения происходит отключение электроустановки.

Система ТТ

Устройство с двумя разделенными друг от друга заземляющими устройствами используется там, где невозможно обеспечить безопасность при помощи TN. Это связано либо с аварийным состоянием нулевых проводников, либо с их большой протяженностью. В основном это касается воздушных линий электропередачи.


Особенность защиты людей от поражения электрическим током в системе ТТ — обязательное применение устройств защитного отключения (УЗО) с дифференциальным током 30 мА.

Красный, коричневый, синий – далеко не полный перечень цветов, в которые окрашиваются токоведущие жилы. Глядя на разнообразие цветов, складывается впечатление, что каждый производитель произвольно выбирает маркировку, и отчасти так оно и есть. Не все цвета регламентируются Правилами устройства электроустановок, в них только чётко оговорено какого цвета провод заземления защиты и цвета фазы в трёхфазной сети.

Разрез трёхжильного кабеля

При этом и в остальной маркировке присутствует закономерность, зная все нюансы которой, можно значительно облегчить процесс монтажа и ремонта как электропроводки, так и электрооборудования.

Цветовая маркировка жил кабелей для трёхфазной сети принципиально отличается от маркировки кабельно-проводниковой продукции для однофазной сети.

Маркировка в трёхфазной сети

Соблюдение правильности и последовательности подключения в трёхфазной сети особенно важно, зачастую от этого зависит надёжность работы дорогостоящего оборудования. В трёхфазных промышленных сетях могут использоваться трёх,- четырёх,- и пятипроводные схемы подключения токоприёмников, соответственно, и силовые подводящие кабели имеют от трёх до пяти жил.


Пример промышленной цветовой маркировки

В первом случае кабель в трёхжильном исполнении, жёлтым цветом обозначается фаза «А», зелёный цвет имеет фаза «В», красный – «С». На втором примере кабель четырёхпроводный, фазы обозначаются аналогично первому варианту, а желто-зелёный провод соединён с защитным заземлением, то есть это РЕ-проводник. Более распространён вариант четырёхпроводной сети, где четвёртый проводник имеет чёрный или синий цвет – в этом случае, он играет роль рабочего заземления или нейтрального проводника, так называемый «ноль».

На третьем примере изображён пятипроводный кабель. Здесь жёлтый, зелёный и красный цвет имеют разноимённые фазы, синий, коричневый или чёрный – ноль или провод рабочего заземления, и жёлтый с зелёной полосой – заземляющий РЕ проводник.

Такая маркировка токоведущих частей признана большинством стран мира. Красный, зелёный, жёлтый, синий (чёрный) и жёлто-зелёный цвет можно встретить на всех электроподстанциях и электростанциях. В эти цвета окрашиваются не только жилы кабеля, но и токоведущие шины, контуры заземлений и места подключения оборудования.


Трёхфазный кабель с ограниченной маркировкой

Несмотря на это, в промышленности ещё можно встретить одноцветные или двухцветные кабели. В этом случае в четырёхпроводном кабеле одна жила имеет меньшее сечение или окрашивается в чёрный (синий, коричневый) цвет, это рабочий ноль.

Чередование фаз в таких кабелях либо не имеет принципиального значения, либо определяется специальным прибором.

Защитное заземление подключается непосредственно от контура, в месте подключения наносится специальный значок, а проводник окрашивается всё в тот же жёлто-зелёный цвет.

Маркировка кабелей в однофазной сети

Требования к цветовой маркировке токоведущих частей в однофазной сети, тем более в быту, не настолько высоки. Для скрытой проводки очень часто применяются одноцветные плоские провода типа ППВ и АППВ, и если в двухпроводном варианте трудностей при подключении возникнуть не может, достаточно воспользоваться простой индикаторной отвёрткой, то в трёхпроводном отличить рабочее и защитное заземление достаточно сложно.


Однофазные кабели без цветовой маркировки

В некоторых случаях можно воспользоваться «прозвонкой», в других выручит вольтметр (как правило, напряжение фаза – защитное заземление меньше, чем фаза – ноль). Опытные электрики и здесь применяют негласное правило: подключив защитное заземление к среднему проводу, при любых перегибах и поворотах, его не спутаешь с проводником рабочего нуля.

В трёхпроводных однофазных сетях, ценой ошибочного подключения может быть жизнь и здоровье, т.е. под напряжением могут оказаться металлические корпуса электроприборов.

Для того чтобы свести вероятность поражения электрическим током к минимуму, и в однофазных сетях всё чаще применяется цветовая маркировка жил.


Кабели для прокладки в однофазных сетях

В первом случае применяется двухпроводный кабель, содержащий фазный и нулевой рабочий провод. Из-за отсутствия чётких стандартов, фазный проводник может окрашиваться в коричневый, белый и даже чёрный цвет, а нулевой чаще имеет синий, очень редко красный, цвет.

В настоящее время очень распространены трёхпроводные кабели для однофазных сетей. Здесь кроме фазного провода, часто имеющего коричневый цвет, и нулевого, цвет которого в основном синий, имеется жёлтый провод с зелёной полосой – защитный заземляющий проводник. Именно провод этого цвета подключается к корпусу электрооборудования и к центральному контакту розетки.

Маркировка заземляющих проводников

Нужно обратить внимание, что цвет провода заземления может быть синий, чёрный, и даже красный, но такое разнообразие касается только рабочего заземления, или нейтрального проводника.

Правильное подключение РЕ-проводника крайне важно для безопасности человека, именно поэтому во всех сетях этот проводник окрашивается в жёлтый цвет с горизонтальными или вертикальными зелёными полосами.

Иногда встречается проводник жёлто-зелёного цвета с синей оплёткой на конце. Так обозначается провод двойного назначения – PEN-проводник, это ноль глухо соединённый с контуром защитного заземления. Несмотря на то что такое соединение существенно ограничивает безопасность и надёжность сети, в отдельных случаях правила устройства электроустановок допускают разделение PEN проводника на защитный – РЕ и рабочий – N.

Из видео можно узнать, какими способами отличают ноль от заземления, как определяется нулевой проводник и находится провод заземления (земля).

При монтаже или ремонте электропроводки важно правильно соединять провода по цветам. Коричневый нигде не должен пересечься с синим, а желто-зеленый должен быть соединён только с желто-зеленым. Никогда не стоит путать понятия рабочего и защитного заземления, тем более нельзя пренебрегать подключением РЕ-проводника в местах, где это предусмотрено конструкцией.

Предупреждение : статья носит чисто информативный характер и не является нормативным документом. При выполнении работ, связанных с электричеством, следует руководствоваться Правилами устройства электроустановок (ПУЭ).

Определения

Заземление - это преднамеренное соединение нетоковедущих элементов оборудования, которые в результате пробоя изоляции могут оказаться под напряжением, с землёй. Заземление состоит из заземлителя (проводящей части или совокупности соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду) и заземляющего проводника, соединяющего заземляемое устройство с заземлителем.

Заземлитель может быть простым металлическим стержнем (чаще всего стальным, реже медным) или сложным комплексом элементов специальной формы. Качество заземления определяется значением электрического сопротивления цепи заземления, которое можно снизить, увеличивая площадь контакта или проводимость среды — используя множество стержней, повышая содержание солей в земле и т.д. Как правило, электрическое сопротивление заземления нормируется.

Главный заземляющий зажим. Для сведения к минимуму электромагнитных помех и обеспечения электробезопасности заземление следует выполнять с минимальным количеством замкнутых контуров. Обеспечение этого условия возможно при выполнении так называемого главного заземляющего зажима (ГЗЗ), или шины. Главный заземляющий зажим должен быть расположен как можно ближе к входным кабелям питания и связи и соединен с заземлителем (заземлителями) проводником наименьшей длины.

Такое расположение ГЗЗ обеспечивает наилучшее выравнивание потенциалов и ограничивает наведенное напряжение от индустриальных помех, грозовых и коммутационных перенапряжений, приходящее извне по экранам кабелей связи, броне силовых кабелей, трубопроводам и антенным вводам. К ГЗЗ (шине) должны быть присоединены:

  • заземляющие проводники;
  • защитные проводники;
  • проводники главной системы уравнивания потенциалов;
  • проводники рабочего заземления (если оно необходимо).

С главным заземляющим зажимом (шиной) должны быть соединены заземлители защитного и рабочего (технологического, логического и т. п.) заземления, заземлители молниезащиты и др. Подробно правила и требования устройства ГЗЗ изложены в ПУЭ.

Открытая токопроводящая часть - доступная прикосновению проводящая часть электроустановки, нормально не находящаяся под напряжением, но которая может оказаться под напряжением при повреждении основной изоляции. К открытым проводящим частям относятся металлические корпуса электрооборудования.

Токоведущая часть – электропроводящая часть электроустановки, находящаяся в процессе ее работы под рабочим напряжением.

Косвенное прикосновение – электрический контакт людей и животных с открытыми проводящими частями, оказавшимися под напряжением при повреждении изоляции. То есть это прикосновение к металлическому корпусу электрооборудования при пробое изоляции на корпус.

Обозначения

Проводники защитного заземления во всех электроустановках, а также нулевые защитные проводники в электроустановках напряжением до 1 кВ с глухозаземленной нейтралью, в том числе шины, должны иметь буквенное обозначение РЕ и цветовое обозначение чередующимися продольными или поперечными полосами одинаковой ширины (для шин от 15 до 100 мм) желтого и зеленого цветов. Нулевые рабочие (нейтральные) проводники обозначаются буквой N и голубым цветом. Совмещенные нулевые защитные и нулевые рабочие проводники должны иметь буквенное обозначение PEN и цветовое обозначение: голубой цвет по всей длине и желто-зеленые полосы на концах.

Графические символы, используемые для обозначения проводников на схемах:



Обозначение заземления:

Буквенные обозначения системы заземления

Первая буква в обозначении системы заземления определяет характер заземления источника питания:

T – непосредственное соединения нейтрали источника питания с землёй;
I – все токоведущие части изолированы от земли.

Вторая буква определяет характер заземления открытых проводящих частей электроустановки здания:

T – непосредственная связь открытых проводящих частей электроустановки здания с землёй, независимо от характера связи источника питания с землёй;
N – непосредственная связь открытых проводящих частей электроустановки здания с точкой заземления источника питания.

Буквы, следующие через чёрточку за N, определяют характер этой связи – функциональный способ устройства нулевого защитного и нулевого рабочего проводников:

S – функции нулевого защитного PE и нулевого рабочего N проводников обеспечиваются раздельными проводниками;
C – функции нулевого защитного и нулевого рабочего проводников обеспечивается одним общим проводником PEN.

Ошибки в устройстве заземления

Неправильные PE-проводники
Иногда в качестве заземлителя используют водопроводные трубы или трубы отопления, однако их нельзя использовать в качестве заземляющего проводника. В водопроводе могут быть непроводящие вставки (например, пластиковые трубы), электрический контакт между трубами может быть нарушен из-за коррозии, и, наконец, часть трубопровода может быть разобрана для ремонта.


Объединение рабочего нуля и PE-проводника
Другим часто встречающимся нарушением является объединение рабочего нуля и PE-проводника за точкой их разделения (если она есть) по ходу распределения энергии. Такое нарушение может привести к появлению довольно значительных токов по PE-проводнику (который не должен быть токоведущим в нормальном состоянии), а также к ложным срабатываниям устройства защитного отключения (если оно установлено).

Неправильное разделение PEN-проводника
Крайне опасным является следующий способ «создания» PE-проводника: прямо в розетке определяется рабочий нулевой проводник и ставится перемычка между ним и PE-контактом розетки. Таким образом, PE-проводник нагрузки, подключенной к этой розетке, оказывается соединенным с рабочим нулем.

Опасность данной схемы в том, что на заземляющем контакте розетки, а, следовательно, и на корпусе подключенного прибора появится фазный потенциал, при выполнении любого из следующих условий:

    Разрыв (рассоединение, перегорание и т.д.) нулевого проводника на участке между розеткой и щитом (а также далее, вплоть до точки заземления PEN-проводника);

    Перестановка местами фазного и нулевого (фазный вместо нулевого и наоборот) проводников, идущих к этой розетке.


Защитная функция заземления

Принцип защитного действия

Защитное действие заземления основано на двух принципах:

    Уменьшение до безопасного значения разности потенциалов между заземляемым проводящим предметом и другими проводящими предметами, имеющими естественное заземление.

    Отвод тока утечки при контакте заземляемого проводящего предмета с фазным проводом. В правильно спроектированной системе появление тока утечки приводит к немедленному срабатыванию защитных устройств ().

Таким образом, заземление наиболее эффективно только в комплексе с использованием УЗО. В этом случае при большинстве нарушений изоляции потенциал на заземленных предметах не превысит опасных величин. Более того, неисправный участок сети будет отключен в течение очень короткого времени (десятые-сотые доли секунды - время срабатывания УЗО).

Работа заземления при неисправностях электрооборудования

Типичный случай неисправности электрооборудования - попадание фазного напряжения на металлический корпус прибора вследствие нарушения изоляции. Следует отметить, что современные электроприборы, имеющие импульсный источник вторичного электропитания, и снабжённые трёх-полюсной вилкой (такие как системный блок ПЭВМ), при отсутствии заземления имеют опасный потенциал на корпусе, даже когда они полностью исправны.

В зависимости от того, какие защитные мероприятия реализованы, возможны следующие варианты:

    Корпус не заземлен, УЗО отсутствует (наиболее опасный вариант ) . Корпус прибора будет находиться под фазным потенциалом и это никак не будет обнаружено. Прикосновение к такому неисправному прибору может быть смертельно опасным.

  • Корпус заземлен, УЗО отсутствует. Если ток утечки по цепи фаза-корпус-заземлитель достаточно велик (превышает порог срабатывания предохранителя, защищающего эту цепь), то предохранитель сработает и отключит цепь. Наибольшее действующее напряжение (относительно земли) на заземленном корпусе составит Umax=RG.IF, где RG − сопротивление заземлителя, IF − ток, при котором срабатывает предохранитель, защищающий эту цепь. Данный вариант недостаточно безопасен, так как при высоком сопротивлении заземлителя и больших номиналах предохранителей потенциал на заземленном проводнике может достигать довольно значительных величин. Например, при сопротивлении заземлителя 4 Ом и предохранителе номиналом 25 А потенциал может достигать 100 вольт.
  • Корпус не заземлен, УЗО установлено. Корпус прибора будет находиться под фазным потенциалом и это не будет обнаружено до тех пор, пока не возникнет путь для прохождения тока утечки. В худшем случае утечка произойдет через тело человека, коснувшегося одновременно неисправного прибора и предмета, имеющего естественное заземление. УЗО отключает участок сети с неисправностью, как только возникла утечка. Человек получит лишь кратковременный удар током (0,01÷0,3 секунды - время срабатывания УЗО), как правило, не причиняющий вреда здоровью.
  • Корпус заземлен, УЗО установлено. Это наиболее безопасный вариант, поскольку два защитных мероприятия взаимно дополняют друг друга. При попадании фазного напряжения на заземленный проводник ток течет с фазного проводника через нарушение изоляции в заземляющий проводник и далее в землю. УЗО немедленно обнаруживает эту утечку, даже если та весьма незначительна (обычно порог чувствительности УЗО составляет 10 мА или 30 мА), и быстро (0,01÷0,3 секунды) отключает участок сети с неисправностью. Помимо этого, если ток утечки достаточно велик (превышает порог срабатывания предохранителя, защищающего эту цепь), то может также сработать и предохранитель. Какое именно защитное устройство (УЗО или предохранитель) отключит цепь - зависит от их быстродействия и тока утечки. Возможно также срабатывание обоих устройств.


Разновидности систем заземления

В России требования к заземлению и его устройство регламентируются Правилами устройства электроустановок (ПУЭ).

Классификация типов систем заземления приводится в качестве основной из характеристик питающей электрической сети. ГОСТ Р 50571.2 рассматривает следующие системы заземления: TN-C, TN-S, TN-C-S, TT, IT.



Система TN
Нейтраль источника глухо заземлена, корпусы электрооборудования присоединены к нейтральному проводу. Режим TN может быть трех видов: TN-C, TN-S, TN-C-S.

Система TN-C
Система TN-C (фр. Terre-Neutre-Combine) предложена немецким концерном АЭГ (AEG, Allgemeine Elektricitäts-Gesellschaft) в 1913 году. Рабочий ноль и PE-проводник (Protection Earth) в этой системе совмещены в один провод. Самым большим недостатком было образование линейного напряжения (в 1,732 раза выше фазного) на корпусах электроустановок при аварийном обрыве нуля. Несмотря на это, на сегодняшний день можно встретить данную систему заземления в постройках стран бывшего СССР.

Система TN-S
На замену условно опасной системы TN-C в 1930-х была разработана система TN-S (фр. Terre-Neutre-Separe), рабочий и защитный ноль в которой разделялись прямо на подстанции, а заземлитель представлял собой довольно сложную конструкцию металлической арматуры. Таким образом, при обрыве рабочего нуля в середине линии, корпуса электроустановок не получали линейного напряжения. Позже такая система заземления позволила разработать дифференциальные автоматы и срабатывающие на утечку тока автоматы, способные почувствовать незначительный ток. Их работа и по сей день основывается на законах Кирхгофа, согласно которым текущий по фазному проводу ток должен быть численно равным текущему по рабочему нулю току.

Также можно наблюдать систему TN-C-S, где разделение нулей происходит в середине линии, однако в случае обрыва нулевого провода до точки разделения корпуса окажутся под линейным напряжением, что будет представлять угрозу для жизни при касании.

Система TN-C-S
В системе TN-C-S трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с точкой заземления трансформаторной подстанции. Для обеспечения этой связи на участке трансформаторная подстанция – электроустановки здания применяется совмещенный нулевой защитный и рабочий проводник (PEN), в основной части электрической цепи – отдельный нулевой защитный проводник (PE).



Система TT
В системе TT трансформаторная подстанция имеет непосредственную связь токоведущих частей с землёй. Все открытые проводящие части электроустановки здания имеют непосредственную связь с землёй через заземлитель, электрически не зависимый от заземлителя нейтрали трансформаторной подстанции.

Система IT
Нейтраль источника изолирована или заземлена через приборы или устройства, имеющие большое сопротивление, корпуса электрооборудования глухо заземлены. Система IT применяется, как правило, в электроустановках зданий и сооружений специального назначения.

ВЫВОДЫ

В качестве общих рекомендаций для выбора той или иной сети можно указать следующее:
1. Сети ТN-C и ТN-C-S не следует использовать из-за низкого уровня электро- и пожаробезопасности, а также возможности значительных электромагнитных возмущений.
2. Сети TN-S рекомендуются для статичных (не подверженных изменениям) установок, когда сеть проектируется «раз и навсегда».
3. Сети ТТ следует использовать для временных, расширяемых и изменяемых электроустановок.
4. Сети IT следует использовать в тех случаях, когда бесперебойность электроснабжения является крайне необходимой.

Возможны варианты, когда в одной и той же сети следует использовать два или три режима. Например, когда вся сеть получает питание по сети TN-S, а часть ее через разделительный трансформатор по сети IT.

Резюмируя изложенное выше, отметим, что ни один из способов заземления нейтрали и открытых проводящих частей не является универсальным. В каждом конкретном случае необходимо проводить экономическое сравнение и исходить из критериев: электробезопасности, пожаробезопасности, уровня бесперебойности электроснабжения, технологии производства, электромагнитной совместимости, наличия квалифицированного персонала, возможности последующего расширения и изменения сети.

ПРИМЕЧАНИЯ

Пункт 1.1.29 ПУЭ
пункты 1.7.122 и 1.7.123 ПУЭ
1.7.135 ПУЭ
При других типах неисправностей заземление менее эффективно, поэтому они здесь не рассматриваются
В схеме импульсного источника вторичного электропитания присутствуют входные проходные или обычные конденсаторы, включенные как между питающими проводниками, так и (в случае наличия металлического корпуса и трёхполюсной вилки) между каждым питающим проводником и корпусом прибора, в этом случае они представляют делитель напряжения, сообщающий корпусу потенциал, примерно равный половине напряжения питания. Этот потенциал обычно присутствует, даже когда прибор выключен имеющимися у него средствами. В наличии потенциала на корпусе можно убедиться с помощью неонового пробника.

В статье использованы материалы из Википедии ,
и сайта журнала