Отдельно о полупроводниковых лазерах. Полупроводниковый лазер

Полупроводниковый лазер , полупроводниковый квантовый генератор, лазер с полупроводниковым кристаллом в качестве рабочего вещества. В П. л., в отличие от лазеров др. типов, используются излучательные квантовые переходы не между изолированными уровнями энергии атомов, молекул и ионов, а между разрешенными энергетическими зонами кристалла (см. Твёрдое тело). В П. л. возбуждаются и излучают (коллективно) атомы, слагающие кристаллическую решётку. Это отличие определяет важную особенность П. л. - малые размеры и компактность (объём кристалла ~10 -6 -10 -2 см 3 ). В П. л. удаётся получить показатель оптич. усиления до 10 4 см -1 (см. Усиления оптического показатель), хотя обычно для возбуждения генерации лазера достаточны и меньшие значения (см. ниже). Другими практически важными особенностями П. л. являются: высокая эффективность преобразования электрической энергии в энергию когерентного излучения (до 30-50%); малая инерционность, обусловливающая широкую полосу частот прямой модуляции (более 10 9 Ггц ); простота конструкции; возможность перестройки длины волны l излучения и наличие большого числа полупроводников, непрерывно перекрывающих интервал длин волн от 0,32 до 32 мкм.

Люминесценция в полупроводниках

Рис. 1. Энергетические схемы: а - накачки и излучательной рекомбинации в полупроводнике; б - оптического усиления при наличии инверсии населённостей состояний вблизи краев зон - дна Е с зоны проводимости и потолка Е n валентной зоны; DЕ - ширина запрещенной зоны, и - квазиуровни Ферми для электронов проводимости и дырок.

]]

При рекомбинации электронов проводимости и дырок в полупроводниках освобождается энергия, которая может испускаться в виде квантов излучения (люминесценция) или передаваться колебаниями кристаллической решётки , т. е. переходить в тепло. Доля излучательных актов рекомбинации у таких полупроводников, как Ge и Si, очень мала, однако в некоторых полупроводниках (например, GaAs, CdS) при очистке и легировании она может приближаться к 100%.

Для наблюдения люминесценции необходимо применить какой-либо способ возбуждения (накачки) кристалла, т. е. способ генерации избыточных электронно-дырочных пар (светом, быстрыми электронами или электрическим полем). При малой скорости образования избыточных электронно-дырочных пар излучательная рекомбинация носит беспорядочный (спонтанный) характер и используется в нелазерных полупроводниковых источниках света (см. Светоизлучающий диод). Чтобы получить генерацию когерентного излучения, т. е. лазерный эффект, необходимо создать особое состояние люминесцирующего кристалла - состояние с инверсией населённостей .

Рекомбинация электронно-дырочной пары может сопровождаться испусканием кванта излучения, близкого по энергии к ширине запрещенной зоны DE полупроводника (рис. 1 , а); при этом длина волны l » hc/ DE , где h - Планка постоянная , с - скорость света.

Инверсия населённостей в полупроводниках

Оптическое квантовое усиление в полупроводнике может наблюдаться в том случае, если зона проводимости вблизи её дна E c заполнена электронами в большей степени, чем валентная зона вблизи её потолка E u . Преобладание числа переходов с испусканием квантов над переходами с их поглощением обеспечивается тем, что на верхних уровнях находится больше электронов, чем на нижних, тогда как вероятности вынужденных переходов в обоих направлениях одинаковы. Заполнение зон принято описывать с помощью т. н. квазиуровней Ферми, отделяющих состояния с вероятностью заполнения уровней больше 1 / 2 от состояний с вероятностью заполнения меньше 1 / 2 . Если и - квазиуровни Ферми для электронов и дырок, то условие инверсии населённостей относительно переходов с энергией hn (где n - частота излучения) выражается формулой:

Полупроводниковый лазер с электронной накачкой.

Рис. 6. Схематическое изображение полупроводниковых лазеров с электронной накачкой: а - поперечной, б - продольной.

Рис. 7. Полупроводниковый лазер с электронной накачкой в отпаянной вакуумной трубке.

При бомбардировке полупроводника быстрыми электронами с энергией W ~ 10 3 -10 6 эв в кристалле рождаются электронно-дырочные пары; количество пар, создаваемое одним электроном, ~W /3DE . Этот способ применим к полупроводникам с любой шириной запрещенной зоны. Выходная мощность П. л. достигает 10 6 вт, что объясняется возможностью накачки большого объёма полупроводника (рис. 6 ). Полупроводниковый лазер с электронной накачкой содержит электронный прожектор, фокусирующую систему и полупроводниковый кристалл в форме оптического резонатора, помещенные в вакуумную колбу (рис. 7 ). Техническое достоинство П. л. с электронной накачкой - возможность быстрого перемещения (сканирования) электронного пучка по кристаллу, что даёт дополнительный способ управления излучением. Т. к. заметная часть энергии электронного пучка тратится на разогрев решётки кристалла, то кпд ограничен (~ 1 / 3); на каждую электронно-дырочную пару расходуется энергия 3DE , а испускается фотон с энергией ~DE

Полупроводниковые лазерные материалы.

В полупроводниковых лазерах используются главным образом бинарные соединения типа А 3 В 5 , А 2 В 6 , А 4 В 6 и их смеси - твёрдые растворы (см. табл.). Все они - прямозонные полупроводники, в которых межзонная излучательная рекомбинация может происходить без участия фононов или др. электронов и поэтому имеет наибольшую вероятность среди рекомбинационных процессов. Кроме перечисленных в табл. веществ, имеется ещё некоторое количество перспективных, но мало изученных материалов, пригодных для П. л., например др. твёрдые растворы. В твёрдых растворах величина DE зависит от химического состава, благодаря чему можно изготовить П. л. на любую длину волны от 0,32 до 32 мкм.

Отличительной особенностью полупроводников, выделяющей их в отдельный класс материалов, является возможность управляемо изменять (инвертировать) тип их электропроводности. При этом диапазон изменения удельного сопротивления может достигать двадцати и более порядков. Именно эта особенность привела к созданию p-n-перехода и развитию полупроводниковой электроники и микроэлектроники. Использование рассмотренных процессов излучательной рекомбинации в полупроводниках при инжекции неосновных носителей заряда через p-n-переход, позволило создать новые классы приборов - светодиоды и полупроводниковые инжекционные лазеры. Эти приборы наряду с фотодиодами являются теми элементами, на которых базируется современная оптоэлектроника. Области их применения весьма широки - от простейших световых индикаторов до волоконно-оптических линий связи сверхвысокой емкости и лазерных систем обработки информации. Их тиражи превышают миллионы при номенклатуре в несколько сотен модификаций. Обладая традиционными преимуществами полупроводниковых приборов: малыми габаритами, мгновенной готовностью к работе, низкими рабочими напряжениями, надежностью, совместимостью с интегральной полупроводниковой технологией, экономичностью и низкой стоимостью, - светодиоды и инжекционные лазеры с высокой эффективностью преобразуют электрическую энергию (сигнал) в световую. Светодиоды преобразуют электрический сигнал в некогерентное, а инжекционные лазеры - в когерентное излучение оптического диапазона.

Среди оптических квантовых генераторов важную роль играют полупроводниковые лазеры. Использование полупроводников в качестве активной среды позволяет непосредственно преобразовать электрическую энергию в энергию светового излучения. Следует напомнить, что в ранее рассмотренных лазерах электрическая энергия сначала превращалась в световую энергию накачки и лишь затем световая энергия вызывала индуцированное излучение лазера. Вследствие этого полупроводниковые лазеры имеют высокий КПД и позволяют сравнительно просто осуществлять модуляцию.

Рис. 1 Диаграмма энергетических уровней р-n перехода

Принцип работы полупроводниковых лазеров можно изложить следующим образом. В соответствии с квантовой теорией в кристаллах полупроводника валентные электроны обычно занимают одну из энергетических зон, называемую валентной зоной (нижний уровень, см. рис.1). Для того чтобы в кристалле полупроводника создать пару «электрон - дырка», одному электрону в валентной зоне необходимо сообщить дополнительную энергию, которая передается ему воздействием света, тока или при повышении температуры. В результате электрон переходит в зону с более высокой энергией - в зону проводимости (верхний уровень), что приводит к появлению пары носителей заряда: электрона (в зоне проводимости) и дырки (в валентной зоне). Энергия, необходимая для создания пары электрон - дырка, измеряется шириной запрещенной зоны. Когда возбужденные электроны переходят из зоны проводимости в валентную зону (а дырки в это же время совершают переход в противоположном направлении), происходит рекомбинация пар электрон - дырка; при этом выделяется энергия в виде квантов светового излучения (фотонов) или квантов энергии термических колебаний решетки кристалла (фононов).

Явление рекомбинационного излучения наблюдается в р-п переходах из мышьяковистого галлия, сурмянистого индия, фосфида индия, сплавов германия с кремнием, карбида кремния, когда прикладывается смещение в прямом направлении, чтобы повысить концентрацию носителей и, следовательно, интенсивность излучения. Действие полупроводникового диода как генератора излучения основано на использовании рекомбинационного излучения, возникающего за счет возбуждения электронов и дырок в полупроводнике при прохождении тока через р-п переход в прямом направлении. Если имеется достаточная концентрация возбужденных, находящихся в зоне проводимости электронов, спонтанное излучение переходит в индуцированное и лазер на полупроводнике начинает генерировать.



Рис. 2 Схема инжекционного лазера с р-n переходом
а - конструкция; б - поперечное распределение интенсивности излучения по активной зоне; 1 - шероховатая поверхность; 2 - оправка; 3 - полированная поверхность; 4 - электрод

Чтобы придать излучаемому свету определенное на-правление, на двух противоположных сторонах кристалла необходимо поместить параллельные зеркала. Этого можно добиться специальной полировкой противоположных граней кристалла, причем эти две боковые грани кристалла делаются строго параллельными друг другу и перпендикулярными к плоскости р-п перехода. Они образуют резонансную систему лазера. Две другие грани полируются под углом одна к другой, чтобы в направлении этих граней не было излучения. К верхней и нижней частям кристалла, т. е. к областям с р и п проводимостью, подводятся контакты: «плюс» к р, а «минус» - к n области (рис. 2).

Лазеры на диодных р-п переходах очень эффективны, так как каждый попадающий в область перехода электрон излучает фотон, а потери сводятся только к оптическому рассеиванию энергии на электрических сопротивлениях в остальных частях диода. В отличие от обычных лазеров в лазерах на полупроводниковых диодах применяется не световая, а электрическая накачка. Для осуществления такой накачки величина смещения в прямом направлении должна быть примерно такого же порядка, что и величина запрещенной зоны в полупроводнике, из которого сделан диод. Благодаря высокой плотности носителей заряда - элементарных излучателей - в активной области вблизи полупроводникового перехода (как в некогерентном, так и в когерентном режиме) достигается высокий КПД (свыше 50%), что намного выше, чем у твердотельных лазеров с оптической накачкой. Существующие в настоящее время оптические квантовые генераторы на диодном переходе имеют малые размеры и значительную энергию излучения. Частоту сигналов полупроводниковых лазеров можно регулировать в значительных пределах изменением температуры. Используя соединения из трех элементов (арсенид-фосфид галлия), в зависимости от содержания мышьяка и фосфора можно получить генерацию в области 6100-8000 А. Трехэлементное соединение арсенид галлия - индия дает возможность построить лазер, генерирующий в интервале 6500-31000 А. Наиболее изучены характеристики излучения диодов из мышьяковистого галлия.

Основные характеристики полупроводниковых лазеров сведены в таблице ниже.

Излучение полупроводникового лазера можно модулировать соответствующим изменением тока смещения, подаваемого на диод в прямом направлении. При этом частота модулирующих колебаний измеряется тысячами мегагерц.

Преимуществом полупроводниковых лазеров является также то, что они могут работать при более высоких частотах следования импульсов (десятки килогерц), чем лазеры на рубине. Недостаток их в том, что по сравнению с другими типами лазеров они излучают колебания в более широкой полосе частот, и поэтому их излучение менее сфокусировано (имеет более широкую диаграмму направленности).

ПОЛУПРОВОДНИКОВЫЙ ЛАЗЕР - лазер на основе полупроводниковой активной среды. В отличие от лазеров др. типов, в П. л. используются квантовые переходы между разрешёнными энергетич. зонами, а не дискретными уровнями энергии (см. Полупроводники ).Лазерный эффект в П. л. связан в осн. с межзонной люминесценцией (излучат. рекомбинацией созданных внеш. воздействием избыточных электронов и дырок; рис. 1). Поэтому длину волны l лазерного излучения можно выразить через ширину запрещённой зоны

где h - постоянная Планка, с - . П. л, перекрывают спектральный диапазон от0,3 мкм до 45 мкм (рис. 2).

В полупроводниковой активной среде может достигаться очень большой показатель оптич. усиления (до ), благодаря чему размеры П. л. исключительно малы, напр. длина резонатора может составлять неск. мкм, типично - 200-300 мкм. Помимо компактности, особенностями П. л. являются малая инерционность высокий кпд возможность плавной спектральной перестройки, большой выбор веществ для генерации в широком спектральном диапазоне.


К достоинствам П. л. следует также отнести совместимость П. л. с полупроводниковыми приборами др. типов и возможность монолитной интеграции, возможность электронного управления режимом генерации и параметрами излучения - длиной волны, степенью , числом спектральных мод и т. п., возможность ВЧ-модуляции излучения путём модуляции тока накачки, низковольтность (<1-3 В) электропитания, а также наибольшую среди лазеров др. типов долговечность (до ч).

П. л. включает в себя активный элемент из полупроводникового монокристалла, чаще всего в форме бруска ("чипа"). Собственно активная область элемента обычно составляет лишь его малую часть, и её объём, напр, в современном, т. н. полосковом, инжекционном лазере , оказывается в пределах Оп-

тич. резонатор П. л. образован либо торцевыми зеркальными гранями активного элемента (изготовляемого обычно путём раскалывания пластин по плоскостям спайности кристалла), либо внеш. отражателями и сложными устройствами с периодич. структурами обратной связи (брэгговскими отражателями и структурами распределённой обратной связи).

Накачка . Важнейшим способом накачки в П. л. является избыточных носителей заряда через р - n-переход, гетеропереход или др. нелинейный электрич. контакт. На рис. 3 показан инжекц. лазер с активной полоской, вытянутой вдоль оси оптич. резонатора перпендикулярно двум плоскопараллельным торцам лазера. Из-за сравнительно малых размеров излучающего пятна на торце инжекц. лазера испускаемое излучение сильно дифрагирует при выходе во внеш. среду и его направленность оказывается невысокой (угол расходимости лазерного пучка составляет 20 - 40° и обычно заметно различается во взаимно ортогональных плоскостях).

Др. способами накачки служат электрич. пробой в сильном поле (напр., в т. н. стримерных лазерах), освещение (П. л. с оптич. накачкой) и бомбардировка быстрыми электронами (П. л. с электронно-лучевой пли электронной накачкой).

П. л. с накачкой электрич. пробоем содержит активный элемент в форме чипа-резонатора с контактами для подведения высоковольтного напряжения. В стример-ном П. л. используется пробой при стримерном разряде в однородном полупроводниковом образце высокого сопротивления. Напряжение в этом П. л. подводится в виде коротких импульсов, а излучающее пятно быстро перемещается вслед за головкой (стримером) электрич. разряда.

При использовании оптич. или электронно-лучевой накачки активная область располагается в приповерхностном слое полупроводникового образца, и толщина этой области зависит от глубины проникновения энергии накачки. В зависимости от взаимного расположения пучка накачки и лазерного луча используют как продольный, так и поперечный вариант геометрии накачки. П. л. с электронно-лучевой накачкой помимо активного элемента (мишени) включает в себя электронную пушку. Особенностью лазеров с такой накачкой является возможность быстрого изменения конфигурации накачки, напр. сканирования со скоростями, обеспечивающими воспроизведение телевиз. изображения (лазерное проекц. телевидение).

В изопериодич. паре более узкозонный компонент служит в качестве активного вещества и, следовательно, должен быть прямозонным материалом. Более широкозонный компонент выполняет роль эмиттерных слоев. Подбор изопериодич. материалов среди бинарных соединений весьма ограничен. Лучшей парой являются соединения GaAs (прямозонное1,5эВ) и AlAs (непрямозонное, 2,1 эВ), у к-рых периоды решётки различаются на 0,14%. В твёрдых растворах бинарных соединений период решётки плавно зависит от состава; возможности подбора в них изопериодич. пар расширяются. Примером могут служить пара InP (= 1,35 эВ) и =0,74 эВ), используемая в гетеролазере на длине волны 1,67 мкм. В четверных и др. многокомпонентных твёрдых растворах существуют непрерывные ряды изопериодич. материалов: напр., пара перекрывает диапазон длин волн 1,0-1,67 мкм, если-между c и у соблюдается "изопериодическое" условие Влазерных гетероструктурах активная область обычно представляет собой тонкий или сверхтонкий (< 100 нм) слой (иногда - неск. таких слоев с прослойками между ними), заключённый между широкозонными эмиттерными слоями (т. н. двойная гетерострук-тура). Активный слой обычно обладает свойствами ди-электрич. волновода, к-рый удерживает поток излучения, распространяющийся вдоль него, и уменьшает . оптич. потери. Активный слой образует собой потенц. яму для избыточных носителей одного или обоих знаков, и в случае особо малой его толщины (< 30 нм) в нём проявляется волновая природа электронов - квантование энергетич. уровней в яме оказывает влияние на спектральную форму полосы усиления. Такие П. л. наз. квантоворазмерными или лазерами с "квантовыми ямами". Уменьшение активного объёма позволяет понизить мощность накачки, необходимую для получения режима генерации. В наиб. миниатюрных лазерах пороговый ток генерации составляет ок. 1 мА при комнатной темп-ре, а для получения оптич. мощности 1 мВт достаточен ток накачки 5-10 мА. Распространённым вариантом пленарной лазерной гетероструктуры является двойная гетеро-структура с трёхслойным волноводом (рис. 6), в к-рой собственно активный слой снабжён тонкими волновод-ными прослойками. На основе такой модифициров. гетероструктуры достигнуты наиб. высокие характеристика ннжекц. лазера. В т. н. заращённых или заглублённых полосковых гетероструктурах активный волновод представляет собой полоску, ограниченную гетеропереходами со всех боковых сторон.


Рис. 6 . Двусторонняя лазерная гетероструктура на основе InGaAsP/InP с трёхслойным волноводом (l = 1,3 мкм).

В инжекц. лазерах удаётся использовать только те лазерные материалы, в к-рых можно получить p - n -переход или p - n -гетеропереход, а также возможно обеспечить протекание тока достаточно высокой плотности К ним не относятся, в частности, прямозонные соединения типаи ряд др. полупроводников (Те, GaSe и др.). Ко всем материалам для П. л., однако, применимы бесконтактные способы накачки - оптическая и электронно-лучевая.

Основные характеристики. Мощность излучения П. л. как ф-ция тока накачки (ватт-амперная характеристика; рис. 7) имеет излом на пороге генерации и крутой более или менее линейный участок, наклон к-рого представляет собой дифференц. ватт-амперную эффективность П. л. Пороговая плотность тока в инжекц. ге-теролазерах на основе GaAlAs/GaAs составляет при комнатной темп-ре 200-500 при ма-

лой толщине активного слоя. В нек-рых образцах П. л. кпд (коэф. преобразования элект-рич. энергии в энергию лазерного излучения) достигает 30-40%. Типичная мощность непрерывного излучения полоско-вого П. л.- ок. 10 мВт, хотя наилучшие ресурсные характеристики (напр., безотказная наработка >ч) соответствуют мощности 1-3 мВт.

Многоэлементные излучатели - фазированные лазерные монолитные "линейки" - обеспечивают мощность лазерного излучения на уровне 5-15 Вт в зависимости от размеров излучателя и числа полосковых элементов. В импульсном режиме мощность излучения ограничивается оптич. прочностью материала (критич. интенсивность излучения в GaAs составляет 2-3 при длительности импульса с). Пиковая мощность инжекц. лазера с широким контактом достигает 20-50 Вт; в лазерах с большим рабочим объёмом, накачиваемых с помощью пли излучения др. лазера, мощность излучения в импульсном режиме может достигатьВт.

Модовой состав излучения существенно зависит от конструкции и размеров резонатора П. л., а также от величины мощности излучения. П. л. испускает узкую спектральную линию, к-рая сужается с увеличением мощности излучения, если не появляются пульсации и многомодовые эффекты. Сужение линии ограничивается фазовыми флуктуациями, обусловленными спонтанным излучением. Эволюция спектра излучения с ростом мощности в инжекц. лазере показана на рис. 7. В од-ночастотном режиме наблюдают сужение спектральной линии доГц; мин. значение ширины линии в П. л. со стабилизацией одночастотного режима с помощью селективного внеш. резонатора составляет величину0,5 кГц. В П. л. путём модуляции накачки удаётся получить модулиров. излучение, напр. в форме синусоидальных пульсаций с частотой, достигающей в нек-рых случаях 10-20 ГГц, или в форме УК-импульсов субпикосекундной длительности Осуществлена передача информации с помощью П. л. со скоростью 2-8 Гбит/с.

Применение П. л. находят в бытовых и техн. устройствах записи и воспроизведения информации (т. н. оптич. игла в проигрывателях на компакт-дисках, видеодисках, в голографич. системах памяти), в лазерных принтерах, волоконно-оптич. системах связи, системах накачки твердотельных лазеров, в автоматике, телеметрич. датчиках, науч. исследованиях, в спектроскопии, спектральных датчиках, оптич. дальномерах, высотомерах, в проекц. лазерном телевидении, оптич. "сторожах", имитаторах стрельбы, индикаторах и т. д. В заруб. странах годовое потребление П. л. составляет экземпляров, гл. обр. гетерлазеров на основе GaAlAs/GaAs и InGaAsP/InP.

Лит.: Елисеев П. Г., Введение в физику инжекционных лазеров, М., 1983; Басов Н. Г., Eлисеев П. Г., Попов Ю. М., Полупроводниковые лазеры, "УФН", 1986, т. 148, с. 35. П. Г. Елисеев .

Перевод Артема Веселова

Полупроводниковые лазеры (иначе - диодные лазеры) - это лазеры с усиливающей средой на основе полупроводников, где генерация происходит, как правило, за счет вынужденного излучения фотонов при межзонных переходах электронов в условиях высокой концентрации носителей в зоне проводимости. Формально, полупроводниковые лазеры также являются твердотельными лазерами , однако их принято выделять в отдельную группу, т.к. они имеют иной принцип работы.

Схематически процесс возникновения усиления в полупроводниках (для обычных случаев межзонных переходов) показан на рисунке.

Conduction band - зона проводимости, valence band - валентная зона, pumping - накачка, light emission - излучение света.

Без накачки большинство электронов находится в валентной зоне. Пучок накачки с фотонами с энергией немного больше ширины запрещенной зоны возбуждает электроны и переводит их в более высокоэнергетическое состояние в зоне проводимости, откуда они быстро релаксируют в состояние вблизи дна зоны проводимости. В то же время, дырки, генерируемые в валентной зоне, перемещаются в ее верхнюю часть. Электроны из зоны проводимости рекомбинируют с этими дырками, испуская фотоны с энергией, приблизительно равной ширине запрещенной зоны. Этот процесс может также стимулироваться входящими фотонами с подходящей энергией. Количественное описание основывается на распределении Ферми-Дирака для электронов в обеих зонах.

Большинство полупроводниковых лазеров являются лазерными диодами с накачкой электрическим током, и с контактом между n-легированными и р-легированными полупроводниковыми материалами. Есть также полупроводниковые лазеры с оптической накачкой, где носители генерируются за счет поглощения возбуждающего их света, и квантово каскадные лазеры, где используются внутризонные переходы.

Основными материалами для полупроводниковых лазеров (и для других оптоэлектронных устройств) являются:

  • GaAs (арсенид галлия)
  • AlGaAs (арсенид галлия - алюминия)
  • GaP (фосфид галлия)
  • InGaP (фосфид галлия - индия)
  • GaN (нитрид галлия)
  • InGaAs (арсенид галлия - индия)
  • GaInNAs (арсенид-нитрид галлия индия)
  • InP (фосфид индия)
  • GaInP (фосфид галлия-индия)

Перечисленные полупроводники являются прямозонными; полупроводники с непрямой запрещенной зоной, такие как кремний, не обладают сильным и эффективным световым излучением. Так как энергия фотона лазерного диода близка к энергии запрещенной зоны, полупроводниковые композиции с разными энергиями запрещенной зоны позволяют получить излучение с различными длинами волн. Для трех- и четырехкомпонентных проводников энергия запрещенной зоны может непрерывно существенно изменяться в некотором диапазоне. В AlGaAs = Al x Ga 1- x As, например, повышение содержание алюминия (рост х ) приводит к уширению запрещенной зоны.

Помимо вышеупомянутых неорганических полупроводников, могут также использоваться органические полупроводниковые соединения для полупроводниковых лазеров. Соответствующая технология еще молодая, но она бурно развивается, так как перспективы дешевого и массового производства таких лазеров весьма привлекательны. До сих пор были продемонстрированы органические полупроводниковые лазеры только с оптической накачкой, так как по разным причинам трудно достичь высокой эффективности за счет электрической накачки.

Типы полупроводниковых лазеров.

В лазерах этого типа активной средой является полупроводниковый кристалл. Наиболее распространенный способ накачки – пропускание через кристалл тока.

Полупроводниковый инжекционный лазер представляет собой двухэлектродный прибор с p-n- переходом (поэтому часто используется термин «лазерный диод»), в котором генерация когерентного излучения связана с инжекцией носителей заряда при протекании прямого тока через p-n- переход.

Активная среда инжекционного лазера (рис. 3.23) размещена в тонком прямоугольном параллелепипеде, расположенном между р и n слоями полупроводниковой структуры; толщина d активной области около 1 мкм. Полированные или сколотые торцы кристалла (шириной w ), выполненные оптически плоскими и строго параллельными, в такой конструкции действуют как оптический резонатор (аналог резонатора Фабри-Перо). Коэффициент отражения оптического излучения на полированных плоскостях кристалла достигает 20-40%, что обеспечивает необходимую положительную обратную связь без применения дополнительных технических средств (специальных зеркал или отражателей). Однако боковые грани кристалла имеют шероховатую поверхность, что уменьшает отражение оптического излучения от них.

Рисунок 3.23 – Конструкция полупроводникового лазера

Накачка активной среды в лазерном диоде обеспечивается внешним электрическим смещением р-n - перехода в прямом направлении. При этом через р-n - переход протекает значительный ток I лд и достигается интенсивная инжекция возбужденных носителей заряда в активную среду полупроводникового лазера. В процессе рекомбинации инжектированных электронов и дырок излучаются кванты света (фотоны).

Лазерные колебания возбуждаются и генерируются, если усиление фотонов в активной среде превышает потери оптического излучения, связанные с частичным выводом, рассеянием и поглощением фотонов. Коэффициент усиления фотонов в активной среде полупроводникового лазера оказывается значительным только при интенсивной инжекции заряда. Для этого необходимо обеспечить достаточно большой электрический ток I лд .

Чтобы систему с активным веществом превратить в генератор, необходимо создать положительную обратную связь, то есть часть усиленного выходного сигнала нужно возвратить в кристалл. Для этого в лазерах используются оптические резонаторы. В полупроводниковом лазере роль резонатора выполняют параллельные грани кристалла, создаваемые методом скола.

Кроме того, необходимо обеспечить электрическое, электронное и оптическое ограничения. Суть электрического ограничения состоит в том, чтобы максимальная доля пропускаемого через структуру электрического тока проходила через активную среду. Электронное ограничение – это сосредоточение всех возбужденных электронов в активной среде и принятие мер против их расплывания в пассивные области. Оптическое ограничение должно предотвратить растекание светового луча при его многократных проходах через кристалл и обеспечить удержание лазерного луча в активной среде. В полупроводниковых лазерах это достигается за счет того, что зона удержания луча характеризуется несколько большим значением показателя преломления, чем соседние области кристалла, – вследствие этого возникает волноводный эффект самофокусировки луча. Неодинаковость показателей преломления достигается различием в характере и степени легирования зон кристалла, включая использование гетероструктур.

При рекомбинации свободных электронов и дырок в полупроводниках освобождается энергия, которая может сообщаться кристаллической решетке (переходить в тепло) или излучаться в виде квантов света (фотонов). Для полупроводниковых лазеров принципиально важным является испускание фотонов (излучательная рекомбинация). В кремниевых и германиевых полупроводниках доля рекомбинационных актов, вызывающих излучение фотонов, весьма невелика; такие полупроводники по существу непригодны для лазеров.

Иначе протекают рекомбинационные процессы в бинарных (двойных) полупроводниках типа А 3 В 5 (а также А 2 В 6 и А 4 В 6), где в определенных, технически совершенных условиях доля излучательной рекомбинации приближается к 100%. Такие полупроводники являются прямозонными; возбужденные электроны проходят запрещенную зону, теряя энергию и излучая фотоны напрямую, не изменяя импульса и направления движения, без дополнительных стимулирующих условий и средств (промежуточных энергетических уровней и тепловых воздействий). Вероятность прямых излучательных переходов оказывается наиболее высокой.

Среди бинарных соединений типа А 3 В 5 в качестве лазерных материалов доминируют кристаллы арсенида галлия GaAs. Расширение физических и технических возможностей полупроводниковых лазеров обеспечивают твердые растворы арсенида галлия, в которых атомы дополнительных элементов (алюминия – Al, индия – In, фосфора – Р, сурьмы – Sb) смешаны и жестко фиксированы в общей кристаллической решетке базовой структуры. Распространение получили тройные соединения: арсенид галлия–алюминия Ga 1–x Al x As, арсенид индия–галлия In x Ga 1–x As, арсенид–фосфид галлия GaAs 1–x P x , арсенид–антимонид галлия GaAs x Sb 1–x и четверные соединения: Ga x In 1–x Asy P 1–y , Al x Ga 1–x Asy Sb 1–y . Содержание (х или у ) конкретного элемента в твердом растворе задано в пределах 0<х <1, 0<у <1.

Эффективно излучающими прямозонными полупроводниками являются двойные соединения А 3 В 5 (InAs, InSb, GaSb), A2B6 (ZnS, ZnSe, ZnTe, ZnO, CdS, CdTe, CdSe), группа (PbS, PbSe, PbTe) и твердые растворы (Zn 1–x Cd x S, CdS 1–x Se x , PbS 1–x Se x , Pb x Sn 1–x Te).

Длина волны излучения полупроводникового лазера достаточно жестко связана с шириной запрещенной зоны, которая, в свою очередь, четко определяется физическими свойствами конкретного полупроводникового соединения. Варьируя состав лазерного материала, можно изменять ширину запрещенной зоны и, как следствие, длину волны лазерного излучения.

Инжекционные лазеры имеют следующие достоинства:

сверхминиатюрность: теоретическая минимальная длина резонатора близка к 10 мкм, а площадь его поперечного сечения – к 1 мкм 2 ;

высокий КПД преобразования энергии накачки в излучение, приближающийся у лучших образцов к теоретическому пределу; это обусловлено тем, что лишь при инжекционной накачке удается исключить нежелательные потери: вся энергия электрического тока переходит в энергию возбужденных электронов;

удобство управления - низкие напряжения и токи возбуждения, совместимые с интегральными микросхемами; возможность изменения мощности излучения без применения внешних модуляторов; работа как в непрерывном, так и в импульсном режиме с обеспечением при этом очень высокой скорости переключения (в пикосекундном диапазоне).

Управление полупроводниковыми лазерами (лазерными диодами) обеспечивается схемотехническими средствами и потому оказывается относительно несложным. Мощность излучения Ризл полупроводникового лазера (рис. 3.24) зависит от инжекционного тока Iлд (тока возбуждения) в активной зоне лазерного диода (ЛД). При небольших уровнях тока Iлд полупроводниковый лазер действует как светодиод и генерирует некогерентное оптическое излучение небольшой мощности. При достижении порогового уровня тока Iлд оптические колебания в лазерном резонаторе генерируются, становятся когерентными; резко возрастает мощность излучения Ризл . Однако генерируемая мощность Ризл и в этом режиме пропорциональна уровню тока Iлд . Таким образом, возможности изменения (переключения, модуляции) мощности излучения полупроводникового лазера прямо связаны с целенаправленным изменением инжекционного тока Iлд .

В импульсном режиме действия лазерного диода его рабочая точка М (рис.3.24а ) фиксируется на пологом участке ватт­амперной характеристики Ризл = (Iлд ) в предпороговой области лазера. Резкое увеличение тока Iлд переводит рабочую точку на крутой участок характеристики (например, в положение N ), что гарантирует возбуждение и интенсивный рост мощности лазерных колебаний. Спад тока Iлд и перевод рабочей точки лазера в исходное положение М обеспечивают срыв лазерных колебаний и резкое снижение выходной мощности лазерного излучения.

В аналоговом режиме модуляции лазерных колебаний рабочая точка Q фиксируется на крутом участке ватт­амперной характеристики (рис. 3.24б ). Изменение тока Iлд под действием внешнего информационного сигнала приводит к пропорциональному изменению выходной мощности полупроводникового лазера.


Рисунок 3.24 – Диаграммы управления мощностью излучения полупроводникового лазера в режимах цифровой (а) и аналоговой (б) модуляции

Инжекционным лазерам присущи и недостатки, к наиболее принципиальным из которых можно отнести:

Невысокую когерентность излучения (в сравнении, например, с газовыми лазерами) - значительную ширину спектральной линии;

Большую угловую расходимость;

Асимметрию лазерного пучка.

Асимметрия лазерного луча объясняется явлением дифракции, из­за которой световой поток, излучаемый прямоугольным резонатором, расширяется неодинаково (рис. 3.25а ): чем у же торец резонатора, тем больше угол излученияθ. В полупроводниковом лазере толщина d резонатора заметно меньше его ширины w; поэтому угол излучения θ|| в горизонтальной плоскости (рис. 3.25б ) меньше угла θ 1 в вертикальной плоскости (рис. 3.25в ), а луч полупроводникового лазера имеет эллиптическое сечение. Обычно θ || ≈ 10­15°, a θ 1 ≈ 20-40°, что явно больше, чем у твердотельных и, особенно, газовых лазеров.


Рисунок 3.25 – Рассеяние оптического излучения полупроводникового лазера

Для устранения асимметрии эллиптический гауссов пучок света с помощью скрещенных цилиндрических линз (рис. 3.9) преобразуют в пучок круглого сечения.

Рисунок 3.26 – Преобразование эллиптического гауссова светового пучка в круговой с помощью скрещенных цилиндрических линз

В допечатных процессах лазерные диоды нашли чрезвычайно широкое применение В качестве источников экспонирующего излучения во многих фотовыводных и формовыводных устройствах, а также в цифровых печатных машинах.

Как правило, лазерное излучение поступает на экспонируемый материал от лазерного диода через оптиковолоконные световоды. Для оптимального оптического согласования полупроводниковых лазеров и волоконных световодов используются цилиндрические, сферические и стержневые (градиентные) линзы.

Цилиндрическая линза (рис. 3.27а ) позволяет преобразовать сильно вытянутый эллипс пучка лазерного излучения и придать ему на входе в волоконный световод почти круглое сечение. При этом эффективность ввода лазерного излучения в многомодовый световод достигает 30%.

Рисунок 3.27 – Применение цилиндрической (а) и сферической (б) линз для оптического согласования полупроводникового лазера и волоконного световода

Сферическая линза (рис. 3.27б ) обеспечивает преобразование расходящихся лучей лазерного излучения в параллельный пучок света значительного диаметра, что заметно облегчает дальнейшее преобразование и оптимальный ввод оптического излучения.

Эффективным элементом такого преобразования и ввода является стержневая (градиентная) линза, которая фокусирует излучение в пучок, сходящийся под необходимым (относительно небольшим) углом с числовой апертурой волоконного световода. Стержневые линзы имеют цилиндрическую форму с плоскими торцами для ввода оптического излучения. В стержневой (градиентной) линзе, как и в градиентном оптическом волокне, коэффициент преломления не является постоянным, а уменьшается пропорционально квадрату расстояния: от центральной оси (то есть пропорционально квадрату радиуса). Однако, в отличие от градиентного световода, у градиентной линзы большой диаметр (1­2 мм) и нет оболочки.

На рис. 3.28а показаны траектории светового пучка в градиентной линзе, в которую вводится параллельный пучок, далее изменяется и продвигается по синусоидальной траектории. Такая траектория распространения света имеет период (шаг)

где g - параметр, определяющий распределение показателя преломления (и, как следствие, степень фокусировки) линзы.

Создавая (вырезая) градиентный стержень определенной длины L , можно четко сформировать определенные фокусирующие свойства линзы. Если L = /2, то падающий параллельный пучок света можно сфокусировать в объеме линзы, а затем вывести его вновь в виде параллельного пучка.

Градиентная линза длиной L = Lp /4 фокусирует параллельный пучок света в пятно небольшого диаметра (рис. 3.28б ), что эффективно при вводе пучка оптического излучения значительного диаметра в волоконный световод с небольшой числовой апертурой.

Формируя градиентную линзу длиной L Lp /2 в техническом варианте, представленном на рис. 3.28в , можно успешно согласовать по оптическому каналу полупроводниковый лазер и волоконный световод


Рисунок 3.28 – Применение стержневых линз для ввода и вывода оптического излучения

В системах CtP обычно используются диоды малой мощности. Однако при их объединении в группы суммарная мощность системы может достигать сотен ватт при КПД 50%. Обычно полупроводниковые лазеры не требуют применения специальных систем охлаждения. Интенсивное водяное охлаждение используется только в устройствах повышенной мощности.

Главным недостатком полупроводниковых лазеров является неодинаковое распределение энергии по сечению лазерного луча. Однако, благодаря хорошему соотношению цены и качества, полупроводниковые лазеры стали в последнее время наиболее востребованным видом источников экспонирующего излучения в CtP-системах.

Широко применяются сегодня инфракрасные диоды с длиной волны 670 и 830 нм. Среди устройств, оснащенных ими - Lotem и Trendsetter (Creo); PlateRite (Dainippon Screen); Topsetter (Heidelberg); XPose! (Luscher); Dimension (Presstek). Для повышения производительности устройств экспонирование осуществляется матрицей диодов. Минимальный размер точки обычно лежит в пределах 10-14 мкм. Однако малая глубина резкости ИК-диодов требует применения дополнительных операций по коррекции луча. Из достоинств ИК-диодов можно отметить возможность загрузки пластин при дневном свете.

В последнее время во многих моделях CtP-устройств используется фиолетовый лазерный диод с длиной волны 405 нм. Полупроводниковый фиолетовый лазер применяется в промышленности сравнительно недавно. Его внедрение связано с разработкой технологии DVD. Достаточно быстро новый источник излучения стал применяться в системах Computer-to-Plate. Фиолетовые лазерные диоды дешевы, долговечны и имеют достаточную для воздействия на копировальные слои пластин энергию излучения. Однако из-за коротковолновой эмиссии лазер очень прихотлив в работе, а на качество записи большое влияние оказывают качество поверхности печатной пластины и состояние оптики. Пластины для экспонирования фиолетовым лазером можно загружать при желтом освещении. В настоящее время фиолетовый лазер используется в следующих устройствах: Palladio (Agfa); Mako 2 (ECRM); Luxel V/Vx (FujiFilm); Prosetter (Heidelberg); PlateDriver (Esko-Graphics).

Применение длинноволновых полупроводниковых и светодиодных источников заметно упрощает схему построения ФНА. Однако эти источники имеют малую мощность, а это приводит к получению «мягкой» точки, площадь которой при копировании па формпый материал уменьшается. Длина волны этих лазеров - от 660 нм (красные) до 780 нм (инфракрасные).