Применение сжатого воздуха. Использование сжатого воздуха

В современном высокотехнологическом мире сжатый воздух незаменим, он используется повсеместно и на сегодняшний день является вторым по важности источником энергии после электричества для очень многих промышленных предприятий.

Что же представляет из себя сжатый воздух? Какие существуют принципы и особенности сжатия воздуха, и что следует помнить при работе с ним?

Начнем с определения: сжатый воздух - это воздух, который находится под давлением, превышающим атмосферное. По сути, сжатый воздух - это сжатый атмосферный воздух, то есть тот воздух, которым мы дышим, который состоит из различных газов:

21% кислород

1% другие газы.

Состояние воздуха (газа) можно описать тремя параметрами:

Давление (Р);

Температура (С);

Удельный объем (Vуд.);

В технологии сжатия воздуха все три параметра измеряются в конкретных величинах:

Рабочее давление (давление сжатия) измеряется в барах;

Температура сжатого воздуха измеряется в градусах Цельсия;

Объем используют как для определения размеров ресивера, так и для расхода компрессорами сжатого воздуха, выраженный в лит./мин или куб.м./час

Одним из средств сжатия воздуха является его “выработка” компрессорным оборудованием. Таким образом, сжатый воздух начинает свой путь в компрессоре.

Прежде чем попасть к потребителю сжатый воздух проходит следующие этапы:

На каждом из этих этапов происходит своего рода трансформация воздуха из одного состояния в другое. Рассмотрим основные принципы и особенности сжатого воздуха.

Температура.

В процессе поступления воздуха из атмосферы в компрессор воздух начинает сжиматься. В момент сжатия воздуха в компрессоре его температура может достигать до 180 С , однако через какое-то время, когда воздух попадает дальше, в ресивер, его температура начинает падать, к примеру, на “выходе” из поршневого компрессора она равняется примерно 40-45 С .

Таким образом, падение температуры сжатого воздуха “на лицо”, и воздух, действительно, остывает. В тот момент, когда его температура начинает понижаться, идет процесс возникновения конденсата или другими словами влаги. Таким образом, о сжатии воздуха важно знать следующее:

При сжатии всегда происходит повышение температуры. Чем сильнее сжимается воздух, тем выше поднимается температура, и даже при сжатии воздуха до невысокого давления происходит значительное возрастание температуры.

Повышение температуры происходит не из-за механического трения частей компрессора и тому подобного, а из-за самого сжатия.

Водяные пары также сжимаются, и при последующем понижении температуры - конденсируются.

При сжатии воздуха пары воды становятся основным загрязнением.

В сжатом воздухе сконденсировавшаяся вода является загрязнением, которое улавливает и переносит другие загрязнения.

Концентрация вредных веществ возрастает, и может стать опасной, если их не удалить.

Самое главное - то, что в итоге сжатия воздуха после падения температуры воздуха возникает конденсат, и это может стать настоящей проблемой для потребителя.

Значительное содержание воды в сжатом воздухе становится причиной коррозии пневмосети. Взвешенные частицы и ржавчина действуют как абразив на элементы пневмоавтоматики. Всё это приводит к серьезным повреждениям пневматического оборудования, тем самым вызывая простои оборудования, повышение эксплуатационных расходов и повреждение производимых изделий.

Состав сжатого воздуха.

При подаче в компрессор обычный воздух содержит около 1,8 миллиардов частиц пыли. Таким образом, воздух, попадающий в компрессор, уже содержит загрязнения в виде твердых частиц. К этому надо добавить и то, что мы уже выяснили - некоторое количество влаги или водяного пара, который при сжатии конденсируется, тоже образует загрязнение воздуха. Но и это еще не все: в процессе работы маслянных компресоров в воздушный поток (в результате нагревания масла) могут попадать масляные пары и образовавшийся углерод.

Масляный туман или пар, исходящий из потока сжатого воздуха, может стать причиной сбоя в работе компрессора, сколов краски от корпуса либо появления отверстий (пробоин) на нем. При эксплуатации компрессора в пищевой отрасли либо в медицинской сфере существует риск попадания вредных веществ в организм человека. Масляный туман является наиболее трудновыводимым элементом при его отделении от воздушного потока.

Все это в целом приводит к тому, что загрязнения в атмосферном воздухе с наличием водяных паров и масляного тумана, в процессе работы компрессора превращаются в 2 миллиарда частиц пыли и 0,03 мг/м.куб. масляных паров в выходном воздушном потоке.

Попадая в пневматическую систему, такая агрессивная смесь приводит к ускоренному износу оборудования и выходу его из строя.

Поэтому встает вопрос о качестве воздуха, которое определяется содержанием частиц пыли, масляного тумана и водяных паров. Требование к качеству сжатого воздуха определяет производитель оборудования и нормируется по DIN ISO 8573-1:2001 или ГОСТ 17433-80. Существуют следующие стандарты ISO для типов сжатого воздуха:

Очистка сжатого воздуха.

В последнее время производство качественного сжатого воздуха приобрело особое значение, так как современная промышленность предъявляет высокие требования к оборудованию, а потребитель - к качеству выпускаемой продукции. В связи с этим существуют комплексные системы подготовки и очистки сжатого воздуха. Если коротко остановится на основных этапах, то они выглядят так.

Для принудительного удаления влаги из сжатого воздуха на первом этапе применяют охладители воздуха, которые охлаждают горячий, содержащий влагу воздух до температуры +10 С по отношению к температуре окружающей среды. В результате резкого охлаждения происходит процесс конденсации. На выходе из охладителя сжатый воздух содержит влагу в виде взвеси капелек воды - водяного конденсата и пара. На следующем этапе получения сжатого воздуха с необходимой точкой росы (содержанием влаги) используются осушители сжатого воздуха.

Для удаления содержащихся в сжатом воздухе других посторонних примесей (песок, пыль, частицы метала от трущихся элементов компрессора, продукты окисления пневматической магистрали, пары масел и т. п.), применяются магистральные фильтры.

Таким образом, какими бы ни были требования по чистоте воздуха, современные системы подготовки и очистки воздуха позволяют эффективно подготовить и очистить воздух до необходимого уровня.

DIN ISO 8573-1:2001 Качество сжатого воздуха

Стандарт качества сжатого воздуха для каждой категории применения

Пневмомагазин.ру

Технологические цехи металлургического завода являются потребителями большого количества сжатого воздуха. Сжатый воздух используют для дутья в доменные печи, для работы пневматических машин и пневмоинструмента, для сжигания топлива в обжиговых, нагревательных и термических печах.

Расход сжатого воздуха в доменных цехах значительно превышает расход воздуха в каких-либо других производствах. Так, для получения 1т чугуна необходимо около 3000 м3 воздуха при нормальных условиях. Для дутья в доменные печи необходим воздух давлением 0,3-0,4 МПа, он вырабатывается на паровоздуходувных станциях ПВС, обычно совмещенных с ТЭЦ (ТЭЦ-ПВС).

Воздуходувные агрегаты, предназначенные для подачи воздуха в доменные печи, устанавливают на воздуходувных станциях.

Эти станции бывают разного исполнения:

    паровоздуходувные (ПВС), включающие котлоагрегаты, паровые турбины и агрегаты доменного дутья;

    комбинированные, паровоздуходувные и электрические (ПВС в составе ТЭЦ-ПВС), состоящие из агрегатов доменного дутья и паровых турбин;

    ПВС или ТЭЦ-ПВС, имеющие в своем составе компрессоры доменного дутья с электроприводом;

    воздуходувные станции, включающие только компрессоры воздушного дутья с электроприводом (ЭВС).

Воздуходувные станции оборудованы многоступенчатыми центробежными воздуходувными машинами. Количество ступеней определяется величиной требуемого давления. Основным элементом центробежных воздуходувных машин является рабочее колесо с лопатками, отбрасывающими воздух при вращении колеса за счет центробежных сил от центра к периферии, при этом воздуху сообщается энергия, повышающая его давление. Из-за значительного нагрева воздуха компрессоры снабжают водяным охлаждением.

Основной тип привода доменных воздуходувок - паровая турбина. Турбины, используемые для этих целей, работают на паре давлением 3,5 МПа или 9 МПа с температурой, соответственно, 435 0 С или 535 0 С. Иногда применяют приводы других типов. Перед подачей в доменную печь воздух после сжатия нагревают до температуры около 1000 0 С в доменных воздухонагревателях (кауперах).

Основной производитель центробежных компрессорных машин, используемых в качестве вохдуходувных агрегатов, Невский машиностроительный завод, г. Санкт-Петербург. Производительность выпускаемых этим предприятием машин от 2500 до 6900 м 3 /мин, давление воздуха 0,45-0,53 Мпа, привод – паровая конденсационная турбина мощностью 12-30МВт.

Для привода пневмомашин и пневмоинструмента используют воздух давлением 0,6-1,0 МПа. Сжатый воздух таких давлений получают централизованно на компрессорных станциях с помощью поршневых и центробежных компрессоров. Центробежные компрессоры предпочтительней, так как обеспечивают непрерывную подачу газа, надёжны и просты в обслуживании, не загрязняют сжатый воздух маслом. Поршневые компрессоры обеспечивают большую степень сжатия газа при одинаковых габаритах с центробежными компрессорами, но имеют меньшую производительность и менее надежны. В связи с этим современные компрессорные станции, как правило, оборудуют центробежными компрессорными машинами. Невский машиностроительный завод выпускает компрессоры производительностью от 345 до 3200 м 3 /мин, давление воздуха до 1,4 МПа.

Сжатый воздух к потребителям транспортируют с помощью развитой сети воздухопроводов, с воздуходувной и компрессорной станций раздельно. Воздухопроводы к доменной печи теплоизолированы, так как температура воздуха после сжатия повышается до 200 0 С. Эти воздухопроводы имеют диаметры, достигающие 2500 мм.

Для сжигания топлива в обжиговых, нагревательных и термических печах используют сжатый воздух давлением 0,003-0,01 МПа, подаваемый центробежными нагнетателями (вентиляторами), устанавливаемыми в непосредственной близости от потребителя.

Общее требование для сжатого воздуха - отсутствие механических примесей, влаги, паров масла. Очистка от механических примесей осуществляется с помощью фильтров, а от влаги и паров масла - путём охлаждения сжатого воздуха. Однако при этом не вся влага конденсируется, и её наличие в трубопроводах может привести к образованию зимой ледяных пробок.

Получение сжатого воздуха требует значительных затрат (так, стоимость доменного дутья - 30% стоимости чугуна).

Атмосферный воздух – смесь газов, не вступающих в реакцию при обычных условиях. В основном это азот и кислород. Поэтому все свойства, характерные для кислорода и азота, присущи и воздуху.

Азот – это газ, близкий по своему воздействию к нейтральным газам, и не требует применения каких-то защитных мер или специальных материалов для объектов, контактирующих с ним. Однако он оказывает неблагоприятное воздействие на человека, длительно пребывающего в среде с повышенным содержанием азота.

Кислород, наоборот, активный окислитель. Поэтому конструкция машин и аппаратов для этого газа должна учитывать корозийность, особенно влажного воздуха, возможность возгорания горючих материалов в среде воздуха, возможность самовоспламенения и взрыва в газовых коммуникациях при наличии отложений нагара, паров или капель масла (свыше 100 атм.).

Воздух растворяется в смазочных маслах, способствует их преждевременному окислению, коксованию, понижению температуры вспышки.

Воздействие на человека

При понижении давления до 140 мм Нg появляются признаки кислородного голодания, а при 110 мм Нg – гипоксия, до 50 – 60мм – уже опасно для жизни.

Увеличение парциального давления N2 в воздухе вызывает наркотические действия.

Высокая концентрация СО2 вызывает асфиксию , а при
14 – 15% его наступает смерть. В жилых помещениях содержание углекислого газа не должно быть выше 0,1%.

4.2 Значение воздуха в развитии человечества

4.2.1 Развитие технологий применения сжатого воздуха

Ещё 3000 лет назад дутьё воздуха мехами применялось для выплавки металлов и вентиляции шахт (есть др. египетские рисунки).

Герон Александрийский ввел понятие «пневматика» - использование сжатого воздуха.

В средние века начали применять привод мехов от водяного колеса.

В средине XVIII века изобретена паровая машина и сходный с ней поршневой компрессор, создавший давление до 0,2 МПа (2 атм).

В 1741г. Гелье построил примитивный вентилятор с вращающимися на оси лопатками – воздуходувку.

Затем появились пневмопочта, водолазный костюм, кессоны.

В начале XIX в. уже могли сжимать воздух до давления 0,5 – 0,6 МПа, и начали передавать его на расстоянии. Началось широкое применение сжатого воздуха в различных технических устройствах.

В 1845г. изобретена пневмомашина, а в 1872 г. – пневмотормоз.

В 1857г. появился пневмоинструмент – бурильный молоток – для прокладки тоннеля в Альпах.

Вскоре появились первые КС – в Париже N =1470 кВт,
p = 0,6 МПа, протяженностью сети до 48 км – обеспечения для фабрик и заводов. Позже довели мощность до 18500 кВт – с паровым приводом.

4.2.2 Назначение сжатого воздуха

Сегодня ни одно промышленное предприятие не может обойтись без применения сжатого воздуха, который является доступным и дешевым источником как сырьевым, так и энергетическим. Особенно широко сжатый воздух используется в промышленности и строительстве. Источниками сжатого воздуха служат как небольшие мобильные установки, так и крупные стационарные компрессорные станции, связанные с потребителями через сеть воздухопроводов, что в совокупности образует систему воздухоснабжения промышленного предприятия.

Системы воздухоснабжения предназначены для выработки сжатого воздуха требуемых параметров и бесперебойного обеспечения им технологических нужд предприятия.

В зависимости от профиля предприятия, производства сжатый воздух сегодня используется для:

Осуществления основных технологических процессов (как компонент химической технологии, например, для получения кислорода и азота, для дутья в металлургии и т. п.);

Энергетического применения, связанного с использованием воздуха как окислителя при сжигании различных топлив или как теплоносителя для нагрева или охлаждения газов и жидкостей;

Как рабочее тело в двигателях ДВС, ГТУ;

Обеспечения работы пневмоинструмента и пневмоприводов, питания машин литейных и кузнечных производств, строительных машин и механизмов, выполнения обдувных, пескоструйных, покрасочных и других работ на производственных предприятиях различного профиля деятельности;

Обеспечение работы технологических комплексов и устройств (конвейеров, систем пневмотранспорта, буровых станков и т. п.);

Обеспечения работы пневматических систем, систем КИП и А и многое другое в технике.

Заметим, что на некоторых производствах, например на химических комбинатах, сжатый воздух для основных технологических процессов имеет параметры, отличные от параметров системы воздухоснабжения, и вырабатывается специальными компрессорами, входящими в состав оборудования технологических линий.

В курсе «Компрессорные станции» рассматривается применение сжатого воздуха в качестве энергоносителя в различных производствах. Это его применение трудно переоценить. Но есть и другие применения. Наиболее значительные из них – использование воздуха в качестве реагентов в металлургии и химии, а также пневмотранспорте.

4.3 Применение сжатого воздуха в металлургии

Здесь воздух применяется в качестве реагента, содержащего О2. Главная функция – дутьё, т. е. подача сжатого воздуха в различные агрегаты – домны, мартены, конверторы. Это крайне необходимо для горения во всех металлургических процессах.

Обогащение руды – (1-й процесс) – повышение содержания железа или другого металла в руде и понижение вредных примесей. Один из способов обогащения – флотация.

Сжатый воздух продувают через пульпу. При пенной флотации частицы полезного минерала не смачиваются водой и поднимаются вместе с пузырьками воздуха, а другие смачиваются и оседают на дно – это пустая порода (рис. 4.4).

Широко используется для обогащения руд цветных металлов (% низкий), но и для железа тоже.

Агломерация" href="/text/category/aglomeratciya/" rel="bookmark">агломерационной машине (рис. 4.5).

Кокс начинает гореть, руда разогревается и превращается в прочную пористую массу – «слипается» – это и есть агломерат, что позволяет потом в домне осуществить более эффективный процесс выплавки чугуна.


Рисунок 4.5 – Схема агломерации

Доменный процесс (рис. 4.6). Железо в руде находится в виде окислов. Поэтому нужно освободить железо от связанного с ним О2 – восстановление.

Рисунок 4.6 – Доменный процесс

Кислород, содержащийся во вдуваемом в печь горячем воздухе, взаимодействует с углеродом кокса, образуя СО2. Он поднимается выше, взаимодействует с коксом, образуя СО, она отбирает у окислов железа руды кислород и связывает его. А освободившееся железо взаимодействует с углеродом, образуя чугун. На 1т чугуна необходимо 2500 – 3500 м3 воздуха, т. е. V =8000 м3/мин. Чтобы воздух не охлаждал печь, его предварительно подогревают до 1100 – 1300ºC в кауперах.

Насадку греют, сжигая топливо. Затем подачу топлива прекращают и прокачивают воздух. Чтобы процесс подачи был непрерывный, устанавливают несколько кауперов. Заметим, что в воздухе 4/5 азота, т. е. 80% энергии затрачивается впустую, т. к. для горения используется только 20% кислорода.

Очевидно, что выгоднее воздух обогащать кислородом. Но это стало возможным лишь в 30 – 40-х годах XX века с появлением мощных разделительных установок.

Конверторный способ варки стали (бессемеровский). Расплавленный жидкий чугун продувают сжатым воздухом, и содержащийся в нем О2 соединяется с углеродом, кремнием и марганцем (рис. 4.7 а). Этот процесс обратный доменному процессу – окислительный. Таким образом, связывают ненужные компоненты в окислы и удаляют.

При продувке воздухом углерод быстро выгорает и из чугуна образуется сталь. А Si и Mn при соединении с О2 выделяют тепло для поддержки реакции, т. е. конвертор – «печь без топлива» (Менделеев). Недостатки – насыщение стали азотом – хрупкость стали, склонность к старению. Оставались и вредные примеси S и P . Чугун для этого годился не всякий, а только с Si и Mn. Металлолом в конверторе нельзя переплавлять.

Поэтому лучше – мартеновский способ – для переработки чугуна и лома (рис. 4.8).

Здесь тепло для процесса плавления необходимо подводить за счет сжигания мазута, коксового газа, калашникового газа. Смесь газа и воздуха подогревается в регенераторах за счёт тепла, уходящих из печи продуктов сгорания. Нагреваются насадки. Аппараты периодического действия. Поэтому их ставят парами и переключают через 15 – 20 мин. Производительность мартена – 100 т стали в час. Этот способ более прогрессивный.

>>Применение сжатого воздуха

Сжатый воздух может занимать значительно меньше места, чем при обычных условиях. Поэтому при хранении и перевозке воздух сжимают. При этом давление воздуха повышается, и поэтому приходится использовать специальные, достаточно прочные стальные баллоны (рис. 91). В таких баллонах, например, содержат сжатый воздух в подводных лодках, а также кислород, используемый при сварке металлов.

Рисунок 91. Стальные баллоны.

На применении сжатого воздуха основано действие различных пневматических устройств (от латинского слова "пневматикос" - воздушный). К ним относятся, например, отбойный молоток и пневматический тормоз.

Устройство отбойного молотка показано на рисунке 92. По шлангу 1 подается сжатый воздух. Устройство 2, называемое золотником, направляет его поочередно то в верхнюю, то в нижнюю часть цилиндра. Под действием этого воздуха боек 3 начинает быстро перемешаться то в одну, то в другую сторону, периодически (с частотой 1000-1500 ударов в минуту) воздействуя на пику 4. Удары последней используют для разрыхления мерзлых грунтов, откалывания от массива кусков горных пород, угля и т. д.

Рисунок 92. Отбойный молоток.

На рисунке 93 показано устройство пневматического тормоза железнодорожного вагона. Магистраль 1, тормозной цилиндр 4 и резервуар 3 заполняют сжатым воздухом. При открывании стоп-крана сжатый воздух выходит из магистральной трубы, и давление в правой части тормозного цилиндра становится меньше, чем в левой (из которой сжатый воздух благодаря клапану 2 выйти не может). В результате этого поршень тормозного цилиндра перемещается вправо и прижимает тормозную колодку 5 к ободу колеса 6, которое при этом затормаживается.

Рисунок 93. Пневматический тормоз.

Давление сжатого воздуха используется и при добыче нефти . На рисунке 94 показаны два способа ее добычи: а - нефть фонтанирует под давлением подземных газов и вод; б - нефть идет из скважины под давлением сжатого воздуха, накачиваемого в нефтеносный пласт.

Рисунок 94. Применение сжатого воздуха при добыче нефти.

Вопросы.

1. Почему сжатые газы содержат в специальных стальных баллонах?

2. Как действует отбойный молоток?

3. Опишите принцип действия пневматического тормоза.

4. Расскажите о способах добычи нефти из скважины

Отослано читателями из интернет-сайтов

Вся физика онлайн , курсы физики для учителей и школьников, онлайн рефераты , все материалы школьнику для подготовки к урокам физики, готовые домашние задания, календарно тематический план по физике

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки