Мощные мосфет транзисторы. MOSFET транзисторы

Как показывает опыт, новички, сталкивающиеся с проверкой элементной базы подручными средствами, без каких-либо проблем справляются с проверкой диодов и биполярных транзисторов, но затрудняются при необходимости проверить столь распространенные сейчас MOSFET-транзисторы (разновидность полевых транзисторов). Я надеюсь, что данный материал поможет освоить этот нехитрый способ проверки полевых транзисторов.

Очень кратко о полевых транзисторах

На данный момент понаделано очень много всяких полевых транзисторов. На рисунке показаны графические обозначения некоторых разновидностей полевых транзисторов.

G-затвор, S-исток, D-сток. Сравнивая полевой транзистор с биполярным, можно сказать, что затвор соответствует базе, исток – эмиттеру, сток полевого транзистора – коллектору биполярного транзистора.

Наиболее распространены n-канальные MOSFET – они используются в цепях питания материнских млат, видеокарт и т.п. У MOSFET имеется встроенный диод:

Типовое включение полевого (MOSFET) транзистора:

Напряжение на затворе!

У подавляющего большинства полевых транзисторов нельзя на затвор (G) подавать напряжение больше 20В относительно истока (S), а некоторые образцы могут убиться при напряжении выше пяти вольт!

Проверка полевых транзисторов (MOSFET)

И вот, иногда наступает момент, когда необходимо полевой транзистор проверить, прозвонить или определить его цоколевку. Сразу оговоримся, что проверить таким образом можно «logic-level» полевые транзисторы, которые можно встретить в цепях питания на материнских платах и видеокартах. «logic-level» в данном случае означает, что речь идет о приборах, которые управляются, т.е. способны полностью открывать переход D-S, при приложении к затвору относительно небольшого, до 5 вольт, напряжения. На самом деле очень многие MOSFET способны открыться, пусть даже и не полностью, напряжением на затворе до 5В.

В качестве примера возьмем N-канальный MOSFET IRF1010N для его проверки (прозвонки). Известно, что у него такая цоколевка: 1 – затвор (G), 2 – сток (D), 3 – исток (S). Выводы считаются как показано на рисунке ниже.

1. Мультиметр выставляем в режим проверки диодов, этот режим очень часто совмещен с прозвонкой. У цифрового мультиметра красный щуп «+», а черный «–», проверить это можно другим мультиметром.
На любом уважающем себя мультиметре есть такая штуковина

2. Щуп «+» на вывод 3, щуп «–» на вывод 2. Получаем на дисплее мультиметра значения 400…700 – это падение напряжения на внутреннем диоде.

3. Щуп «+» на вывод 2, щуп «–» на вывод 3. Получаем на дисплее мультиметра бесконечность. У мультиметров обычно обозначается как 1 в самом старшем разряде. У мультиметров подороже, с индикацией не 1999 а 4000 будет показано значение примерно 2,800 (2,8 вольта).

4. Теперь удерживая щуп «–» на выводе 3 коснуться щупом «+» вывода 1, потом вывода 2. Видим, что теперь щупы стоят так же, как и в п.3, но теперь мультиметр показывает 0…800мВ – у MOSFET открыт канал D-S. Если продолжать удерживать щупы достаточно долго, то станет заметно, что падение напряжения D-S увеличивается, что означает, что канал постепенно закрывается.

5. Удерживая щуп «+» на выводе 2, щупом «–» коснуться вывода 1, затем вернуть его на вывод 3. Как видим, канал опять закрылся и мультиметр показывает бесконечность.

Поясним, что же происходит. С прозвонкой внутреннего диода все понятно. Непонятно почему канал остается либо закрытым, либо открытым? На самом деле все просто. Дело в том, что у мощных MOSFET емкость между затвором и истоком достаточно большая, например у взятого мной транзистора IRF1010N измеренная емкость S-G составляла 3700пФ (3,7нФ). При этом сопротивление S-G составляет сотни ГОм (гигаом) и более. Не забыли – полевые транзисторы управляются электрическим полем, а не током в отличие от биболярных. Поэтому в п.4 касаясь “+” затвора (G) мы его заряжаем относительно истока (S) как обычный конденсатор и управляющее напряжение на затворе может держаться еще достаточно долго.

Помой транзистор!

Если хвататься за выводы транзистора руками, особенно жирными и влажными, емкость транзистора будет разряжаться значительно быстрее, т.к. сопротивление будет определяться не диэлектриком у затвора транзистора, а поверхностным сопротивлением. Не смытый флюс также сильно снижает сопротивление. Поэтому рекомендую помыть транзистор, перед проверкой, например, в спирто-бензиновой смеси.

P.S. Спирто-бензиновая смесь при испарении может генерировать статическое электричество, которое, как известно, негативно действует на полевые транзисторы.

Небольшие пояснения о мультиметрах

1. У цифровых мультиметров режим проверки диодов проводится измерением падения напряжения на щупах, при этом по щупам прибор пропускает стабильный ток 1мА. Именно поэтому в данном режиме прибор показывает не сопротивление, а падение напряжения. Для германиевых диодов оно равно 0,3…0,4В, для кремниевых 0,6…0,8В. Но что бы там не измерялось напряжение на щупах прибора редко превышает 3В – это ограничение накладывается схемотехникой мультиметров.
2. В п.4 при измерении падения напряжения открытого канала величина, отображаемая мультиметром может сильно меняться от различных факторов: напряжения на щупах, температуры, тока стабилизации, характеристик самого полевого транзистора.

Тренировка =)

Теперь можно потренироваться в определении цоколевки мощного транзистора. Перед нами транзистор IRF5210 и его цоколевка мне неизвестна.

1. Начну с поиска диода. Попробую все варианты подключения к мультиметру. После каждого измерения корочу ножки транзистора фольгой чтобы обеспечить разряд емкостей транзистора. Возможные варианты показаны в таблице:


Т.е. диод находится между выводами 2 и 3, соответственно затвор (G) находится на выводе 1.

2. Осталось определить, где находятся сток (D) и исток (S) и полярность (n-канал или p-канал) полевого транзистора.

2.1. Если это n-канальный транзистор, то сток (D) – 3 вывод, исток (S) – 2 вывод. Проверяем. Прикладываем «–» щуп мультиметра к выводу 2, «+» к выводу 3 – канал закрыт, так и должно быть – мы же его еще не пытались открыть. Теперь не отнимая щупа «–» от вывода 2 щупом «+» касаемся вывода 1, затем «+» опять прикладываем к выводу 3. Канал не открылся – значит, наше предположение о том, что IRF5210 n-канальный транзистор оказалось неверным.

2.2. Если это p-канальный транзистор, то сток (D) – 2 вывод, исток (S) – 3. Проверяем. Прикладываем «+» щуп мультиметра к выводу 3, «–» к выводу 2 – канал закрыт, так и должно быть – мы же его еще не пытались открыть. Теперь не отнимая щупа «+» от вывода 3 щупом «–» касаемся вывода 1, затем «–» опять прикладываем к выводу 2. Канал открылся – значит, что IRF5210 p-канальный транзистор, вывод 1 – затвор, вывод 2 – сток, вывод 3 – исток.

На самом деле все не так сложно. Буквально пол часа тренировки – и вы сможете без каких-либо проблем проверять MOSFETы и определять их цоколевку!

Силовые полупроводниковые приборы. Силовые MOSFET транзисторы

MOSFET - это аббревиатура от английского словосочетания Metal-Oxide-Semiconductor Field Effect Transistor (Металл- Оксидные Полупроводниковые Полевые Транзисторы).

Данный класс транзисторов отличается, прежде всего, минимальной мощностью управления при значительной выходной (сотни ватт). Также необходимо отметить чрезвычайно малые значения сопротивления в открытом состоянии (десятые доли ома при выходном токе в десятки ампер), а следовательно, минимальную мощность, выделяющуюся на транзисторе в виде тепла.

Обозначение этого типа транзисторов показано на рис. 7.1. Также для сокращения числа внешних компонентов в транзистор может быть встроен мощный высокочастотный демпферный диод.

Рис. 7.1. Обозначение MOSFET транзисторов (G - затвор, D - сток, S - исток): а - обозначение N-канального транзистора; б - обозначение Р-канального транзистора

Преимущества MOSFET транзисторов перед биполярными

К неоспоримым преимуществам MOSFET транзисторов перед биполярными можно отнести следующие:

  • минимальная мощность управления и большой коэффициент усиления по току обеспечивает простоту схем управления (есть даже разновидность MOSFET, управляемых логическими уровнями);
  • большая скорость переключения (при этом минимальны задержки выключения, обеспечивается широкая область безопасной работы);
  • возможность простого параллельного включения транзисторов для увеличения выходной мощности;
  • устойчивость транзисторов к большим импульсам напряжения (dv/dt).

Применение и производители

Данные приборы находят широкое применение в устройствах управления мощной нагрузкой, импульсных источниках питания. В последнем случае область их применения несколько ограничена максимальным напряжением сток-исток (до 1000 В).

MOSFET™ с N-каналом наиболее популярны для коммутации силовых цепей. Напряжение управления или напряжение, приложенное между затвором и истоком для включения MOSFET, должно превышать порог UT 4 В, фактически необходимо 10-12 В для надежного включения MOSFET. Снижение напряжения управления до нижнего порога UT приведет к выключению MOSFET.

Силовые MOSFET выпускают различные производители :

  • HEXFET (фирма NATIONAL);
  • VMOS (фирма PHILLIPS);
  • SIPMOS (фирма SIEMENS).

Внутренняя структура MOSFET

На рис. 7.2 показано сходство внутренней структуры HEXFET, VMOS и SIPMOS. Они имеют вертикальную четырехслойную структуру с чередованием Р и N слоев: Такая структура вызвана тяжелыми режимами работы N-канальных MOSFET.

Если напряжение, приложенное к выводам затвора, выше порогового уровня, затвор смещается относительно истока, создавая инверсный N-канал под пленкой оксида кремния, который соединяет исток со стоком для протекания тока.

Проводимость MOSFET обеспечивается за счет основных носителей, так как отсутствуют инжектированные неосновные носители в канале. Это не приводит к накоплению заряда, что ускоряет процесс переключения. Во включенном состоянии зависимость между током и напряжением почти линейна, аналогично сопротивлению, которое рассматривается как сопротивление канала в открытом состоянии.


Рис. 7.2. Внутренние структуры транзисторов: а - транзистор структуры HEXFET; б - транзистор структуры VMOS; в - транзистор структуры SIPMOS

Рис. 7.3. Схема замещения MOSFET: а - первый вариант эквивалентной схемы; б - второй вариант эквивалентной схемы с замещением транзистора диодом; в - внутренняя структура, соответствующая первому варианту

Параметры MOSFET

Рассмотрим основные параметры, характеризуют MOSFET транзисторы.

Максимальное напряжение "сток-исток" , U DS - максимальное мгновенное рабочее напряжение.

Продолжительный ток стока , I D - максимальный ток, который может проводить MOSFET, обусловленный температурой перехода.

Максимальный импульсный ток стока , I DM - больше, чем I D и определен для импульса заданной длительности и рабочего цикла.

Максимальное напряжение "затвор-исток" age , U GS - максимальное напряжение, которое может быть приложено между затвором и истоком без повреждения изоляции затвора.

Кроме того, имеют место :

  • пороговое напряжение затвора, U T {U TH , U GS };
  • U T - минимальное напряжение затвора, при котором транзистор включается.

На сегодняшний день, среди достаточного количества разновидностей транзисторов выделяют два класса: p-n - переходные транзисторы (биполярные) и транзисторы с изолированным полупроводниковым затвором (полевые).

Другое название, которое можно встретить при описании полевых транзисторов – МОП (металл – окисел - полупроводник). Обусловлено это тем, что в качестве диэлектрического материала в основном используется окись кремния (SiO 2).

Еще одно, довольно распространенное название – МДП (металл – диэлектрик - полупроводник).

Немного пояснений. Очень часто можно услышать термины MOSFET, мосфет, MOS-транзистор. Данный термин порой вводит в заблуждение новичков в электронике.

Что же это такое MOSFET ?

MOSFET – это сокращение от двух английских словосочетаний: Metal-Oxide-Semiconductor (металл – окисел – полупроводник) и Field-Effect-Transistors (транзистор, управляемый электрическим полем). Поэтому MOSFET – это не что иное, как обычный МОП-транзистор.

Думаю, теперь понятно, что термины мосфет, MOSFET, MOS, МДП, МОП обозначают одно и тоже, а именно полевой транзистор с изолированным затвором.

Внешний вид одного из широко распространённых мосфетов - IRFZ44N.


Стоит помнить, что наравне с аббревиатурой MOSFET применяется сокращение J-FET (Junction – переход). Транзистор J-FET также является полевым, но управление им осуществляется за счёт применения в нём управляющего p-n перехода. В отличие от MOSFET"а, J-FET имеет немного иную структуру.

Принцип работы полевого транзистора.

Суть работы полевого транзистора заключается в возможности управления протекающим через него током с помощью электрического поля (напряжения). Этим он выгодно отличается от транзисторов биполярного типа, где управление большим выходным током осуществляется с помощью малого входного тока.

Взглянем на упрощённую модель полевого транзистора с изолированным затвором (см. рис.). Поскольку мосфеты бывают с разным типом проводимости (n или p), то на рисунке изображён полевой транзистор с изолированным затвором и каналом n-типа.


Основу МДП-транзистора составляет:

    Подложка из кремния . Подложка может быть как из полупроводника p-типа, так и n-типа. Если подложка p-типа, то в полупроводнике в большей степени присутствуют положительно заряженные атомы в узлах кристаллической решётки кремния. Если подложка имеет тип n, то в полупроводнике в большей степени присутствуют отрицательно заряженные атомы и свободные электроны. В обоих случаях формирование полупроводника p или n типа достигается за счёт введения примесей.

    Области полупроводника n+ . Данные области сильно обогащены свободными электронами (поэтому "+"), что достигается введением примеси в полупроводник. К данным областям подключаются электроды истока и стока.

    Диэлектрик . Он изолирует электрод затвора от кремниевой подложки. Сам диэлектрик выполняют из оксида кремния (SiO 2). К поверхности диэлектрика подключен электрод затвора – управляющего электрода.

Теперь в двух словах опишем, как это всё работает.

Если между затвором и истоком приложить напряжение плюсом (+ ) к выводу затвора, то между металлическим выводом затвора и подложкой образуется поперечное электрическое поле. Оно в свою очередь начинает притягивать к приповерхностному слою у диэлектрика отрицательно заряженные свободные электроны, которые в небольшом количестве рассредоточены в кремниевой подложке.

В результате в приповерхностном слое скапливается достаточно большое количество электронов и формируется так называемый канал – область проводимости . На рисунке канал показан синим цветом. То, что канал типа n – это значит, что он состоит из электронов. Как видим между выводами истока и стока, и собственно, их областями n+ образуется своеобразный «мостик», который проводит электрический ток.

Между истоком и стоком начинает протекать ток. Таким образом, за счёт внешнего управляющего напряжения контролируется проводимость полевого транзистора. Если снять управляющее напряжение с затвора, то проводящий канал в приповерхностном слое исчезнет и транзистор закроется – перестанет пропускать ток. Следует отметить, что на рисунке упрощённой модели показан полевой транзистор с каналом n-типа. Также существуют полевые транзисторы с каналом p-типа.

Показанная модель является сильно упрощённой. В реальности устройство современного MOS-транзистора гораздо сложнее. Но, несмотря на это, упрощённая модель наглядно и просто показывает идею, которая была заложена в его устройство.

Кроме всего прочего полевые транзисторы с изолированным затвором бывают обеднённого и обогащённого типа. На рисунке показан как раз полевой транзистор обогащённого типа – в нём канал «обогащается» электронами. В мосфете обеднённого типа в области канала уже присутствуют электроны, поэтому он пропускает ток уже без управляющего напряжения на затворе. Вольт-амперные характеристики полевых транзисторов обеднённого и обогащённого типа существенно различаются.

О различии MOSFET"ов обогащённого и обеднённого типа можно прочесть . Там же показано, как различные МОП-транзисторы обозначаются на принципиальных схемах.

Нетрудно заметить, что электрод затвора и подложка вместе с диэлектриком, который находится между ними, формирует своеобразный электрический конденсатор . Обкладками служат металлический вывод затвора и область подложки, а изолятором между этими электродами – диэлектрик из оксида кремния (SiO 2). Поэтому у полевого транзистора есть существенный параметр, который называется ёмкостью затвора .

Об остальных важных параметрах мосфетов я уже рассказывал на страницах сайта.

Полевые транзисторы в отличие от биполярных обладают меньшими собственными шумами на низких частотах. Поэтому их активно применяют в звукоусилительной технике. Так, например, современные микросхемы усилителей мощности низкой частоты для автомобильных CD/MP3-проигрывателей имеют в составе MOSFET"ы. На приборной панели автомобильного ресивера можно встретить надпись “Power MOSFET” или что-то похожее. Так производитель хвастается, давая понять, что он заботится не только о мощности, но и о качестве звука.

Полевой транзистор, в сравнении с транзисторами биполярного типа, обладает более высоким входным сопротивлением, которое может достигать 10 в 9-й степени Ом и более. Эта особенность позволяет рассматривать данные приборы как управляемые потенциалом или по-другому - напряжением. На сегодня это лучший вариант создания схем с достаточно низким потреблением электроэнергии в режиме статического покоя. Данное условие особенно актуально для статических схем памяти имеющих большое количество запоминающих ячеек.

Если говорить о ключевом режиме работы транзисторов, то в данном случае биполярные показывают лучшую производительность, так как падение напряжений на полевых вариантах очень значительно, что снижает общую эффективность работы всей схемы. Несмотря на это, в результате развития технологии изготовления полупроводниковых элементов, удалось избавиться и от этой проблемы. Современные образцы обладают малым сопротивлением канала и прекрасно работают на высоких частотах.

В результате поисков по улучшению характеристик мощных полевых транзисторов был изобретён гибридный электронный приборIGBT-транзистор , который представляет собой гибрид полевого и биполярного. Подробнее о IGBT-транзисторе можно прочесть .

На сегодняшний день, среди достаточного количества разновидностей транзисторов выделяют два класса: p-n - переходные транзисторы (биполярные) и транзисторы с изолированным полупроводниковым затвором (полевые). Другое название, которое можно встретить при описании полевых транзисторов – МОП (металл – оксид - полупроводник) обусловлено это тем, что в качестве диэлектрического материала в основном используется окись кремния (SiO 2). Еще одно, довольно распространенное название – МДП (металл – диэлектрик - полупроводник).

Очень часто можно услышать термины MOSFET, мосфет, MOS-транзистор. Данный термин порой вводит в заблуждение новичков в электронике.

Что же это такое MOSFET ?

MOSFET – это сокращение от двух английских словосочетаний: Metal-Oxide-Semiconductor (металл – оксид – полупроводник) и Field-Effect-Transistors (транзистор , управляемый электрическим полем). Поэтому MOSFET – это не что иное, как обычный МОП-транзистор.

Думаю, теперь понятно, что термины мосфет, MOSFET, MOS, МДП, МОП обозначают одно и тоже, а именно полевой транзистор с изолированным затвором.

Стоит помнить, что наравне с аббревиатурой MOSFET применяется сокращение J-FET (Junction – переход). Транзисторы J-FET также являются полевыми транзисторами, но управление таким транзистором осуществляется за счёт применения в нём управляющего p-n перехода. Эти транзисторы в отличие от MOSFET имеют немного иную структуру. В данной статье мы рассмотрим более детально MOSFET N проводимости с индуцированным каналом. Остальные типы не сильно отличаются и вы можете ознакомиться в этой статье .

Принцип работы полевого транзистора.

Основан на влиянии внешнего электрического поля на проводимость прибора.

Устройство МДП-транзистора (MOSFET) с индуцированным каналом.

На основании (подложке ) полупроводника с электропроводностью P-типа (для транзистора с N-каналом) созданы две зоны с повышенной электропроводностью N + -типа. Все это покрывается тонким слоем диэлектрика, обычно диоксида кремния SiO 2 . Сквозь диэлектрический слой проходят металлические выводы от областей N + -типа, называемые стоком и истоком . Над диэлектриком находится металлический слой затвора . Иногда от подложки также идет вывод, который закорачивают с истоком


Работа МДП-транзистора (MOSFET) с индуцированным каналом N-типа.

Подключим напряжение любой полярности между стоком и истоком. В этом случае электрический ток не пойдет, поскольку между зонами N + находиться область P, не пропускающая электроны. Далее, если подать на затвор положительное напряжение относительно истока U зи, возникнет электрическое поле. Оно будет выталкивать положительные ионы (дырки) из зоны P в сторону подложки. В результате под затвором концентрация дырок начнет уменьшаться, и их место займут электроны, притягиваемые положительным напряжением на затворе.

Когда U зи достигнет своего порогового значения, концентрация электронов в области затвора превысит концентрацию дырок. Между стоком и истоком сформируется тонкий канал с электропроводностью N-типа, по которому пойдет ток I си. Чем выше напряжение на затворе транзистора U зи, тем шире канал и, следовательно, больше сила тока. Такой режим работы полевого транзистора называется режимом обогащения.


Принцип работы МДП-транзистора с каналом P–типа такой же, только на затвор нужно подавать отрицательное напряжение относительно истока.

MOSFET на практике

Изображение MOSFET транзистора на принципиальной электрической схеме (N-канальный МОП).

D-drain (сток);

S-source (исток);

G-gate (затвор).

Основные параметры полевых транзисторов.

    V DSS (Drain-to-Source Voltage) – напряжение между стоком и истоком. Это, как правило, напряжение питания вашей схемы. При подборе транзистора всегда необходимо помнить о 20% запасе.

    I D (Continuous Drain Current) – ток стока или непрерывный ток стока. Всегда указывается при постоянной величине напряжения затвор-исток (например, V GS =10V тоесть напряжения полного открытия затвора). В даташите, как правило, указывается максимально возможный ток.

    R DS(on) (Static Drain-to-Source On-Resistance) – сопротивление сток-исток открытого канала. При увеличении температуры кристалла транзистора сопротивление открытого канала увеличивается.

    P D (Power Dissipation) – мощность транзистора в ваттах. Этот параметр ещё называют мощностью рассеивания. В даташите величина данного параметра указывается для определённой температуры.

    V GS (Gate-to-Source Voltage) – Оптимальное напряжение насыщения затвор-исток. Это то напряжение которое нужно подать на затвор чтобы транзистор открылся полностью.

    V GS(th) (Gate Threshold Voltage) – минимальное пороговое напряжение включения транзистора. Это напряжение, при котором происходит открытие проводящего канала транзистора и он начинает пропускать ток между выводами истока и стока. Если между выводами затвора и истока приложить напряжение меньше V GS(th) , то транзистор будет закрыт. Обратите внимания, при подаче минимального напряжения на Затвор, транзистор открывается, но его сопротивление тогда не минимальное и следовательно он начинает интенсивнее греться.

И самое важное что нам эти параметры дают и на что стоит обратить внимание.

  1. Current - Continuous Drain (id) @ 25° C . Говорит нам о том, что при температуре 25 градусов ток пропускаемый между Истоком и Стоком будет 6.3А. При повышении температуры ток понижается и растёт сопротивление, соответственно тепловыделение.
  2. Gate Charge (qg) @ Vgs. Так как Затвор индуктивный, ему требуется время чтоб зарядить грубо говоря катушку и только тогда откроется транзистор. Вот 8.9 нано секунд как раз и требуется для открытия затвора. Важный параметр если вы используете транзистор для генерации ШИМ, на большой частосте он может не успевать.
  3. Gate-source Breakdown Voltage Тоже не маловажный параметр, напряжение которое надо подать чтоб открыть Сток - Исток. Для нормальной работы надо открывать транзистор напряжением от этого до Drain To Source Voltage (vdss) тоесть максимального.
  4. Drain To Source Voltage (vdss) Максимально напряжение которым можно открывать транзистор, если подать больше он перегорит.
  5. Vgs(th) (max) @ Id Минимальное напряжение которое можно подать на Затвор. Но учтите при подаче минимального напряжения, время открытия существенно увеличивается, так же увеличивается сопротивление Сток - Исток и выделяется больше тепла. Грубо говоря при таком раскладе он пропустит гораздо меньше тока через себя, поэтому чаще всего в сочетании с полевиками используют драйверы полевиков или транзисторы повышающие по напряжению.
  6. Input Capacitance (ciss) @ Vds Емкость Затвора при 16 Вольт в данном случае равна 700pF. По ней можно расчитать время заряда, но увы не знаю как:)
  7. Drain-source Breakdown Voltage Максимальное пропускаемое напряжение через Сток - Исток.
  8. Continuous Drain Current Ток между Сток Исток при полном открытии (тоесть при 12-20в на Затворе)

Изложил как смог, буду признателен в исправлениях и дополнениях.