Светодиодный калькулятор онлайн. Расчет и подбор сопротивления для светодиода

Результатом расчета будут точное значение номинала резистора и близкое к нему типовое значение заводского номинала резистора.
Светодиоды по праву заслужили признание автолюбителей, ведь они дают мощный световой поток при мизерном потреблении (в сравнении с обычными автомобильными лампами накала), а так же предоставляют широкий выбор цвета свечения и габаритов. Часто, любители в процессе переделки сгоревших ламп накаливания в светодиодные, сталкиваются с вопросом: как подключить светодиод к бортовой сети автомобиля (у легкового 12 Вольт, у грузового 24 Вольта) или мотоцикла (6-12 Вольт)? Ведь подключив напрямую вы сразу его спалите . В этой статье я расскажу как правильно подключать один или несколько светодиодов к источнику питания . Вы узнаете для чего светодиоду нужен резистор и сможете рассчитать его значение при помощи нашего онлайн калькулятора.

Как правильно подключить светодиод к бортовой сети.

Для правильной работы светодиода необходимо ограничить ток протекающий через него. Для этого, к бортовой сети светодиод подключается последовательно с токоограничивающим резистором. Необходимость в ограничении тока обосновывается зависимостью срока службы светодиода от проходящего тока, чем он выше тем меньше срок службы. Но следует отметить, что зависимость эта нелинейная и при превышении определенного рекомендованного порога (смотрите Datasheet на вашу модель) диод выходит из строя.

На рисунке приведены несколько вариантов включения светодиодов с резисторами а так же указаны какие из включений являются оптимальными, какие правильными но менее оптимальными в плане энергопотребления, а какое неправильное и приведет к значительному сокращению срока службы светодиодов. С вариантом схемы включения определились, теперь предстоит выяснить какой резистор нужен для светодиода.

Онлайн калькулятор: “Расчет резистора для светодиода”.

Формула для расчета резистора выглядит следующим образом: R= (Uпит – (Uпр.св* N))/I
Где: Uпит- напряжение источника питания Uпр.св- прямое напряжение на светодиоде, N-количество светодиодов, I- ток проходящий через светодиод. Естественно возникает вопрос где взять эти данные? Для тех кто решил махнуть рукой т.к. не знает ничего о названии и происхождении добытых диодов,- скажу не спешите, чуть ниже будет дано универсальное решение вашего вопроса.

Давайте рассмотрим в качестве примера Datasheet на 3 миллиметровый светодиод фирмы kingbright
На рисунке ниже скриншот с указанием характеристик светодиода при силе тока проходящего через него 2 мА при температуре 25С. Из всех представленных характеристик нас интересует лишь Forward Voltage – прямое напряжение на светодиоде.

  • мощности
  • импульсного тока
  • прямого постоянного тока (DC Forward Current) именно это значение нас и интересует, в данном случае нельзя допускать прохождение тока выше 25 миллиампер (при температуре 25 градусов по Цельсию).

Последний рисунок иллюстрирует зависимость характеристик от условий использования:

  • зависимость прямого напряжения от проходящего тока
  • зависимость интенсивности светового потока от проходящего тока
  • зависимость проходящего тока от температуры
  • зависимость интенсивности светового потока от от температуры

Исходя из полученных в Datasheet данных можно сделать вывод, что оптимальным является значение проходящего тока от 2 до 10 миллиампер, при этом типовое значение прямого напряжение на выводах светодиода составляет от 1,9 до 2 Вольт.

Пример расчета №1 Если ввести в онлайн калькулятор напряжение бортовой сети 12 (В), значение тока 2 (мА), значение прямого напряжения 1,9 (В) количество светодиодов 1 получим расчетное значение резистора = 5050 Ом Ближайший производственный номинал резистора 5100 Ом или 5,1 кОм маркировка отечественных резисторов 5к1 маркировка smd резистора 512

Пример расчета №2 Если ввести в калькулятор напряжение бортовой сети грузовика 24 (В), значение тока 10 (мА) светим по полной:), значение прямого напряжения 2 (В) количество светодиодов 3 (маленькая гирлянда получилась) расчетное значение резистора = 1800 Ом Ближайший производственный номинал резистора 1800 Ом или 1,8 кОм маркировка отечественных резисторов 1к8 маркировка smd резистора 182

Рекомендации по подключению светодиодов с неизвестными характеристиками:

Примите в качестве значения тока 5-10 (мА), значение прямого напряжения на светодиоде 1,5-2 (В), введите в калькулятор напряжение вашей бортсети и произведите расчет. С вероятностью в 99% ваш светодиод в таком режиме прослужит не один год. Проконтролировать точность расчета можно измерив проходящий через диод ток, для этого амперметр подключается последовательно с вашей цепочкой из резистора и светодиода. Если есть вопросы задавайте в комментариях.

Светодиоды в наши дни нашли применение практически во всех областях деятельности человека. Но, несмотря на это, для большинства обычных потребителей совершенно неясно, благодаря чему и какие законы действуют при работе светодиодов. Если такой человек захочет устроить освещение посредством таких устройств, то множества вопросов и поиска решения проблем не избежать. И главным вопросом будет - «Что это за штука такая – резисторы, и для чего они требуются светодиодам?»

Резистор - это одна из составляющих электрической сети , характеризующаяся своей пассивностью и в лучшем случае, отличающаяся показателем сопротивления электротоку. То есть, в любое время для такого устройства должен быть справедлив закон Ома.

Главное предназначение устройств - способность энергично сопротивляться электрическому току. Благодаря этому качеству, резисторы нашли широкое применение при необходимости устройства искусственного освещения, в том числе и с использованием светодиодов.

Для чего необходимо использование резисторов в случае устройства светодиодного освещения?

Большинству потребителей известно, что обыкновенная лампочка накаливания даёт свет при её прямом подключении к какому-либо источнику питания. Лампочка может работать на протяжении длительного времени и перегорает лишь тогда, когда по причине подачи слишком высокого напряжения чрезмерно нагревается накаливающая нить. В таком случае лампочка, некоторым образом, реализует функцию резистора, потому как прохождение электротока через неё затруднительно, но чем выше подаваемое напряжение, тем легче току удаётся преодолеть сопротивление лампочки. Конечно же, ставить в один ряд такую сложную полупроводниковую деталь, как светодиод и обыкновенную лампочку накаливания нельзя.

Важно знать, что светодиод – это такой электрический прибор , для функционирования которого предпочтительнее не сама сила тока, а напряжение, имеющееся в сети. Например, если таким устройством выбрано напряжение 1,8 В, а к нему приходит 2 В, то, вероятнее всего, он перегорит – если вовремя не снизить напряжение до требующегося приспособлению уровня. Вот именно с этой целью и требуется резистор, посредством которого осуществляется стабилизация использующегося источника питания, чтобы подаваемое им напряжение не вывело устройство из строя.

В связи с этим крайне важно:

  • определиться, какого типа резистор требуется;
  • определить необходимость использования для конкретного прибора индивидуального резистора, для чего требуется расчёт;
  • учесть вид соединения источников света;
  • планируемое число светодиодов в осветительной системе.

Схемы соединения

При последовательной схеме расстановки светодиодов, когда они располагаются один за одним, обычно хватает одного резистора, если получится правильно рассчитать его сопротивление. Это объясняется тем, что в электрической цепи имеется один и тот же ток , в каждом месте установки электрических приборов.

Но в случае параллельного соединения, для каждого светодиода требуется свой резистор. Если пренебречь этим требованием, то все напряжение придётся тянуть одному, так называемому «ограничивающему» светодиоду, то есть тому, которому необходимо наименьшее напряжение. Он слишком быстро выйдет из строя , при этом напряжение будет подано на следующий в цепи прибор, который точно так же скоропостижно перегорит. Такой поворот событий недопустим, следовательно, в случае параллельного подключения какого-либо числа светодиодов требуется использование такого же количества резисторов, характеристики которых подбираются расчётом.

Расчёт резисторов для светодиодов

При правильном понимании физики процесса, расчёт сопротивления и мощности данных устройств нельзя назвать невыполнимой задачей, с которой не под силу справиться обычному человеку. Для расчёта требующегося сопротивления резисторов, нужно обязательно учесть следующие моменты:

Расчёт резисторов при помощи специального калькулятора

Обычно, расчёт сопротивления таких приспособлений, требующихся для какого-либо светодиода, производится посредством специально предназначенного для этих целей калькуляторов. Такие калькуляторы, удобные и высокоэффективные, не нужно откуда-то скачивать и устанавливать – рассчитать резистор вполне можно и в онлайн-режиме.

Калькулятор расчёта резисторов позволяет с высокой точностью определить требуемую мощность и показатель сопротивления резистора, устанавливающегося в светодиодную цепь.

Для расчёта требующегося сопротивления необходимо в соответствующие строки онлайн-калькулятора внести:

Далее, требуется выбрать использующуюся схему соединения, а также необходимое число светодиодов.

После нажатия соответствующей кнопки выполняется расчёт и на экран монитора выводятся полученные расчётные данные , при помощи которых можно в дальнейшем без особого труда организовать искусственное светодиодное освещение.

Также в онлайн-калькуляторах имеется некоторая база, содержащая данные о светодиодах и их параметрах. Представлена возможность расчёта:

  • номинала приспособления;
  • цветовой маркировки;
  • потребляемого цепью тока;
  • рассеиваемой мощности.

Человек, не сильно разбирающийся в электрике и физике, в большинстве случаев не сможет самостоятельно рассчитать устройства для светодиодов. По этой причине, проведение расчётов при помощи функционального и удобного онлайн-калькулятора – неоценимая помощь для обычных людей , не владеющих методикой расчётов с применением физических формул.

Большинство известных производителей светодиодов и созданных на их основе лент, на своих официальных сайтах выкладывают и собственный онлайн-калькулятор , с помощью которого можно не только подобрать требующиеся резисторы и светодиоды, но и вычислить параметры использующихся токовых приборов в различных режимах эксплуатации при переменных значениях тока, температуры, подаваемого напряжения и пр.

Расчет резистора для светодиода довольно прост и занимает минимум времени. Кроме того существуют множество онлайн калькуляторов, которые помогают выполнить подобные расчеты. Однако, я считаю, что гораздо полезнее самому разобраться в этом вопросе, понять физику протекающих процессов и собственноручно выполнять подобные расчеты. Этим мы и займемся в данной статье.

Светодиоды являются универсальными приборами. Они могут использоваться в качестве индикации, либо просто могут быть полноценными осветительными приборами.

У практикующих начинающих электронщиков довольно часто возникает ситуация, когда нужно запитать светодиод от источника питания, напряжение которого значительно превышает номинальное напряжение светодиода (рис. 1 ). Например, напряжение аккумуляторной батареи 12 В , а светодиод на 2 В (рис. 2 ) Если на светодиод подать такое напряжение, то он попросту сгорит. Или когда светодиод используется в качестве индикатора напряжения 220 В . Без применения специальных мер, при подключении на прямую, он также выйдет из строя.

Рис. 1 — Схема подключения светодиода через резистор



Рис. 2 — Схема прямого подключения светодиода к источнику напряжения

Для того, чтобы снизить напряжение на светодиоде и ограничить ток в его цепи, нужно последовательно с ним соединить резистор (рис. 3 ). Давайте рассчитаем параметры этого резистора. Такая методика подойдет для любого светодиода при любом напряжении источника питания.


Рис. 3 — Соединение резистора со светодиодом

Расчет выполним на примере светодиода типа АЛ307 (рис. 4 ). Номинальное напряжение его Uсд = 2 В , а ток Iсд = 10 мА = 0,01 А. Питать светодиод мы будем в первом случае от Uип1 = 12 В , а во втором – от Uип1 = 5 В , поскольку такие величины напряжения наиболее распространены. Этих трех параметров нам достаточно знать, чтобы рассчитать сопротивление R для светодиода.

Рис. 4 — Светодиод АЛ307. Внешний вид

Выпишем исходные данные.

Uип1 = 12 В;

Uип2 = 5 В;

Uсд = 2 В;

Iсд = 10 мА = 0,01 А.

Сначала находим величину напряжения ΔU R , какую должен погасить резистор, т. е. находим падение напряжения на резисторе. Оно равно разнице напряжений источника питания и светодиода:

ΔUR = Uип – Uсд;

ΔUR = 12 – 2 = 10 В.

Т. е. на резисторе должно погаситься 10 В . Сопротивление резистора R равно отношению падения напряжения на нем ΔU R к току (рис. 5 ):

R = ΔUR/Iсд;

R = 10/0,01 = 1000 Ом = 1 кОм.


Рис. 5 — Сопротивление резистора для светодиода при Uип1 = 12 В

Определим сопротивление для светодиода при питании от источника напряжения 5 В .

Uип = 5 В;

Uсд = 2 В;

Iсд = 10 мА = 0,01 А.

Падение напряжения на резисторе:

ΔU R = Uип – Uсд;

ΔU R = 5 – 2 = 3 В.

Сопротивление (рис. 6 ):

R = ΔU R /Iсд;

R = 3/0,01 = 300 Ом.


Рис. 6 — Сопротивление резистора для светодиода при Uип2 = 5 В

И так, сопротивления резисторов мы определили. Однако знание его величины еще не достаточно, чтобы включить резистор в цепь. Также очень важным параметром является мощность рассеивания, которая выделяется резистором в виде тепла вследствие протекания через него тока.

Расчет мощности резистора для светодиода

Существуют стандартные . Визуально мощность рассеивания резистора можно определить по размеру (рис. 7, 8 ). Чем больше размер резистора, тем большую мощность он способен рассеять.


Рис. 7 — Резистор с мощность рассеивания 0,125 Вт


Рис. 8 — Резистор с мощность рассеивания 1 Вт

Чтобы окончательно определимся с выбором резистора рассчитаем его мощность рассеивания P , которая равна произведению напряжения, приложенного к резистору ΔU R , на ток Iсд , протекающий через него.

P = UI = U 2 /R = I 2 R.

P1 = 0,01 2 ·300 = 0,03 Вт.

P2 = 0,01 2 ·1000 = 0,1 Вт.

Как видно, в обеих случаях нам подойдет резистор с мощностью рассеивания 0,125 Вт или больше.

Давайте подытожим алгоритм расчета резистора для светодиода.

  1. Определяем падение напряжения на резисторе.
  2. Находим сопротивление.
  3. Рассчитываем мощность рассеивания.

Являясь полупроводниковым прибором отличается нелинейностью вольт-амперной характеристики (ВАХ); зависимость тока от напряжения носит экспоненциальный характер. Даже небольшое превышение напряжения питания может вызвать появление тока, способного вывести светодиод (далее СД) из строя.

Поэтому, для ограничения тока в качестве гасящего балласта применяют обычный резистор, от правильного расчета сопротивления которого зависит работа светодиода и срок его службы.

При питающем напряжении, превышающем рабочий диапазон напряжения СД может попросту сгореть, при заниженном - либо светиться “вполнакала”, либо совсем не включится.

Калькулятор расчета сопротивления резисторов для светодиодов

Питающее напряжение, В

Прямое напряжение светодиода, В

Ток светодиода, mA

Количество светодиодов, шт

Требуемое сопротивление, Ом

Калькулятор может быть использован для расчета сопротивления резистора для одного или нескольких, соединенных последовательно светодиодов (!). Номинал сопротивления резистора выбирается из ближайшего большего значения стандартного ряда.

При расчете на предложенном калькуляторе используются такие исходные данные как количество СД в цепи и схема их включения, а также прямое напряжение, ток СД и значение питающего напряжения.

Для определения прямого напряжения а тока СД в случае отсутствия технической документации прямое напряжение может быть определено исходя из цвета свечения диода (см. табл. ниже). Следует обратить внимание, что приведенные в таблице значения прямого напряжения будут верны для СД, рассчитанных на 20 mA.

Схемы подключения светодиодов

Если для последовательного подключения нескольких светодиодов к источнику питания для ограничения тока достаточно одного резистора, то при параллельном подключении следуем избегать использования одного гасящего резистора (см. схемы).

Связано это с тем, что из-за даже небольшой разности собственных сопротивлений СД для корректной работы каждого требуется индивидуальное значение напряжения.

В противном случае один или несколько светодиодов будут светиться заметно ярче остальных, потребляя, соответственно больше тока, что чревато ускорением процесса деградации кристаллов диодов и быстрым выходом их из строя.

Поэтому, при параллельном подключении для каждого СД следует предусмотреть свой токоограничивающий резистор.

Говоря о подключении СД нельзя не упомянуть об обязательности соблюдения полярности подключения: к аноду диода должен подключаться “плюсовой”, к катоду - “минусовой” проводники от источника питания.

Обычный маленький светодиод выглядит как пластиковая колбочка-линза на проводящих ножках, внутри которой расположены катод и анод. На схеме светодиод изображается как обычный диод, от которого стрелочками показан излучаемый свет. Вот и служит светодиод для получения света, когда электроны движутся от катода к аноду — излучается видимый свет.

Изобретение светодиода приходится на далекие 1970-е, когда для получения света во всю применяли лампы накаливания. Но именно сегодня, в начале 21 века, светодиоды заняли наконец место самых эффективных источников электрического света.

Где у светодиода «плюс», а где «минус»?

Чтобы правильно подключить светодиод к источнику питания, необходимо прежде всего соблюсти полярность. Анод светодиода подключается к плюсу «+» источника питания, а катод — к минусу «-». Катод, подключаемый к минусу, имеет вывод короткий, анод, соответственно, - длинный — длинную ножку светодиода - на плюс «+» источника питания.


Взгляните во внутрь светодиода: большой электрод — это катод, его — к минусу, маленький электрод, похожий просто на окончание ножки, - на плюс. А еще рядом с катодом линза светодиода имеет плоский срез.

Паяльник долго на ножке не держать

Паять выводы светодиода следует аккуратно и быстро, ведь полупроводниковый переход очень боится лишнего тепла, поэтому нужно краткими движениями паяльника дотрагиваться его жалом до припаиваемой ножки, и тут же паяльник отводить в сторону. Лучше в процессе пайки держать припаиваемую ножку светодиода пинцетом, чтобы обеспечить на всякий случай отвод тепла от ножки.

Резистор обязателен при проверке светодиода


Мы подошли к самому главному — как подключить светодиод к источнику питания. Если вы хотите проверить светодиод на работоспособность, то не стоит напрямую присоединять его к батарее или к блоку питания. Если ваш блок питания на 12 вольт, то используйте для подстраховки резистор на 1 кОм последовательно с проверяемым светодиодом.

Не забывайте о полярности — длинный вывод на плюс, вывод от большого внутреннего электрода — к минусу. Если не использовать резистор, то светодиод быстро перегорит, в случае если вы нечаянно превысите номинальное напряжение, через p-n-переход потечет большой ток, и светодиод практически тут же выйдет из строя.

Светодиоды бывают разных цветов, однако цвет свечения не всегда определяется цветом линзы светодиода. Белый, красный, синий, оранжевый, зеленый или желтый — линза может быть прозрачной, а включишь — окажется красным или синим. Светодиоды синего и белого свечения — самые дорогие. Вообще, на цвет свечения светодиода влияет в первую очередь состав полупроводника, и как вторичный фактор - цвет линзы.

Находим номинал резистора для светодиода

Резистор включается последовательно со светодиодом. Функция резистора — ограничить ток, сделать его близким к номиналу светодиода, чтобы светодиод мгновенно не перегорел, и работал бы в нормальном номинальном режиме. Берем в расчет следующие исходные данные:

    Vps - напряжение источника питания;

    Vdf - прямое падение напряжения на светодиоде в нормальном режиме;

    If - номинальный ток светодиода при нормальном режиме свечения.

Теперь, прежде чем находить , отметим, что ток в последовательной цепи у нас будет постоянным, одним и тем же в каждом элементе: ток If через светодиод будет равен току Ir через ограничительный резистор.

Следовательно Ir = If. Но Ir = Ur/R - по закону Ома. А Ur = Vps-Vdf. Таким образом, R = Ur/Ir = (Vps-Vdf)/If.

То есть, зная напряжение источника питания, падение напряжения на светодиоде и его номинальный ток, можно легко подобрать подходящий ограничительный резистор.

Если найденное значение сопротивления не удается выбрать из стандартного ряда номиналов резисторов, то берут резистор несколько большего номинала, например вместо найденных 460 Ом, берут 470 Ом, которые всегда легко найти. Яркость свечения светодиода уменьшится весьма незначительно.

Пример подбора резистора:

Допустим, имеется источник питания на 12 вольт, и светодиод, которому нужно 1,5 вольта и 10 мА для нормального свечения. Подберем гасящий резистор. На резисторе должно упасть 12-1,5 = 10,5 вольт, а ток в последовательной цепи (источник питания, резистор, светодиод) должен получиться 10 мА, следовательно из Закона Ома: R = U/I = 10,5/0,010 = 1050 Ом. Выбираем 1,1 кОм.

Какой мощности должен быть резистор? Если R = 1100 Ом, а ток составит 0,01 А, то, по закону Джоуля-Ленца, на резисторе каждую секунду будет выделяться тепловая энергия Q = I*I*R = 0,11 Дж, что эквивалентно 0,11 Вт. Резистор мощностью 0,125 Вт подойдет, даже запас останется.

Последовательное соединение светодиодов

Если перед вами стоит цель соединить несколько светодиодов в единый источник света, то лучше всего соединение выполнять последовательно. Это нужно для того, чтобы к каждому светодиоду не цеплять свой резистор, чтобы избежать лишних потерь энергии. Наиболее подходят для последовательного соединения светодиоды одного и того же вида, из одной и той же партии.

Допустим, необходимо последовательно объединить 8 светодиодов по 1,4 вольта с током по 0,02 А для подключения к источнику питания 12 вольт. Очевидно, общий ток будет составлять 0,02 А, но общее напряжение составит 11,2 вольта, следовательно 0,8 вольт при токе в 0,02 А должны рассеяться на резисторе. R = U/I = 0,8/0,02 = 40 Ом. Выбираем резистор на 43 Ом минимальной мощности.

Параллельное соединение цепочек светодиодов — не лучший вариант

Если есть выбор, то светодиоды лучше всего соединять последовательно, а не параллельно. Если соединить несколько светодиодов параллельно через один общий резистор, то в силу разброса параметров светодиодов, каждый из них будет не в равных условиях с остальными, какой-то будет светиться ярче, принимая больше тока, а какой-то — наоборот тусклее. В результате, какой-нибудь из светодиодов сгорит раньше в силу быстрой деградации кристалла. Лучше для параллельного соединения светодиодов, если альтернативы нет, применить к каждой цепочке свой ограничительный резистор.