Фракталы. Введение во фракталы

Фрактал

Фракта́л (лат. fractus -дроблёный,сломанный,разбитый) - геометрическая фигура,обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре целиком.В математике под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, отличную от топологической. Фрактазм - самостоятельная точная наука изучения и составления фракталов.

Другими словами фракталы – геометрические объекты с дробной размерностью. К примеру, размерность линии – 1, площади – 2, объема – 3. У фрактала же значение размерности может быть между 1 и 2 или между 2 и 3. К примеру, фрактальная размерность скомканного бумажного шарика приблизительно равна 2,5. В математике существует специальная сложная формула для вычисления размерности фракталов. Разветвления трубочек трахей, листья на деревьях, вены в руке, река - это фракталы. Говоря простым языком, фрактал - это геометрическая фигура, определенная часть которой повторяется снова и снова, изменяясь в размерах - это и есть принцип самоподобия. Фракталы подобны самим себе, они похожи сами на себя на всех уровнях (т.е. в любом масштабе). Существует много различных типов фракталов. В принципе, можно утверждать, что всё, что существует в реальном мире, является фракталом, будь то облако или молекула кислорода.

Слово «хаос» наводит на мысли о чем-то непредсказуемом, но на самом деле хаос достаточно упорядочен и подчиняется определенным законам. Цель изучения хаоса и фракталов - предсказать закономерности, которые, на первый взгляд, могут казаться непредсказуемыми и абсолютно хаотическими.

Пионером в этой области познания был франко-американский математик, профессор Бенуа Б. Мандельброт. В середине 1960-х им разработана фрактальная геометрия, целью которой был анализ ломаных, морщинистых и нечетких форм. Множество Мандельброта (показано на рисунке) - первая ассоциация, возникающая у человека, когда он слышит слово «фрактал». К слову, Мандельброт определил, что фрактальная размерность береговой линии Англии составляет 1,25.

Фракталы находят всё большее применение в науке. Они описывают реальный мир даже лучше, чем традиционная физика или математика. Броуновское движение - это, например, случайное и хаотическое движение частичек пыли, взвешенных в воде. Этот тип движения, возможно, является аспектом фрактальной геометрии, имеющий наибольшее практическое использование. Случайное броуновское движение имеет частотную характеристику, которая может быть использована для предсказания явлений, включающих большие количества данных и статистики. К примеру, Мандельброт предсказал при помощи броуновского движения изменение цен на шерсть.

Слово «фрактал» может употребляться не только как математический термин. Фракталом в прессе и научно-популярной литературе могут называть фигуры, обладающие какими-либо из перечисленных ниже свойств:

    Обладает нетривиальной структурой на всех масштабах. В этом отличие от регулярных фигур (таких, как окружность, эллипс, график гладкой функции): если мы рассмотрим небольшой фрагмент регулярной фигуры в очень крупном масштабе, он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведёт к упрощению структуры, на всех шкалах мы увидим одинаково сложную картину.

    Является самоподобной или приближённо самоподобной.

    Обладает дробной метрической размерностью или метрической размерностью, превосходящей топологическую.

Наиболее полезным использованием фракталов в компьютерной технике является фрактальное сжатие данных. При этом картинки сжимаются гораздо лучше, чем это делается обычными методами - до 600:1. Другое преимущество фрактального сжатия в том, что при увеличении не наблюдается эффекта пикселизации, резко ухудшающего картинку. Мало того, фрактально сжатая картинка после увеличения часто выглядит даже лучше, чем до него. Cпециалистам в области компьютерной техники известно также, что фракталы бесконечной сложности и красоты могут быть сгенерированы простыми формулами. Индустрия кино для создания реалистичных элементов ландшафта (облака, скалы и тени) широко использует технологию фрактальной графики.

Изучение турбулентности в потоках очень хорошо подстраивается под фракталы. Это позволяет лучше понять динамику сложных потоков. При помощи фракталов также можно смоделировать языки пламени. Пористые материалы хорошо представляются в фрактальной форме в связи с тем, что они имеют очень сложную геометрию. Для передачи данных на расстояния используются антенны, имеющие фрактальные формы, что сильно уменьшает их размеры и вес. Фракталы используются для описания кривизны поверхностей. Неровная поверхность характеризуется комбинацией из двух разных фракталов.

Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, снежинки, кровеносная система и система альвеол человека или животных.

Фракталы, особенно на плоскости, популярны благодаря сочетанию красоты с простотой построения при помощи компьютера.

Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке (например, функция Больцано, функция Вейерштрасса, множество Кантора). Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы».

На рисунке слева в качестве простого примера приведен фрактал «пятиугольник Дарера», который выглядит, как связка пятиугольников, сжатых вместе. Фактически он образован при использовании пятиугольника в качестве инициатора и равнобедренных треугольников, отношение большей стороны к меньшей в которых в точности равно так называемой золотой пропорции (1.618033989 или 1/(2cos72°)) в качестве генератора. Эти треугольники вырезаются из середины каждого пятиугольника, в результате чего получается фигура, похожая на 5 маленьких пятиугольников, приклеенных к одному большому.

Теория хаоса говорит, что сложные нелинейные системы являются наследственно непредсказуемыми, но, в то же время утверждает, что способ выражения таких непредсказуемых систем оказывается верным не в точных равенствах, а в представлениях поведения системы - в графиках странных аттракторов, имеющих вид фракталов. Таким образом, теория хаоса, о которой многие думают как о непредсказуемости, оказывается наукой о предсказуемости даже в наиболее нестабильных системах. Учение о динамических системах показывает: простые уравнения могут порождать такое хаотическое поведение, при котором система никогда не возвращается в стабильное состояние и при этом не проявляется никакой закономерности. Часто такие системы ведут себя вполне нормально до некоторого определенного значения ключевого параметра, потом испытывают переход, в котором существует две возможности дальнейшего развития, потом четыре, и, наконец, хаотический набор возможностей.

Схемы процессов, протекающих в технических объектах, имеют четко выраженное фрактальное строение. Структура минимальной технической системы (ТС) подразумевает протекание в пределах ТС двух типов процессов – главного и обеспечивающих, причем это деление условно и относительно. Любой процесс может быть главным по отношению к обеспечивающим, а любой из обеспечивающих процессов может считаться главным по отношению к «своим» обеспечивающим процессам. Кружками на схеме обозначены физэффекты, обеспечивающие протекание тех процессов, для обеспечения которых не требуется специально создавать «свои» ТС. Эти процессы являются результатом взаимодействия между веществами, полями, веществами и полями. Если быть точным, то физэффект – это ТС, на принцип работы которой мы не можем повлиять, а в ее устройство не желаем или не имеем возможности вмешиваться.

Протекание главного процесса, изображенного на схеме, обеспечивается существованием трех обеспечивающих процессов, являющихся главными для порождающих их ТС. Справедливости ради отметим, что для функционирования даже минимальной ТС трех процессов явно недостаточно, т.е. схема очень и очень утрирована.

Всё далеко не так просто, как показано на схеме. Полезный (нужный человеку) процесс не может выполняться со стопроцентной эффективностью. Рассеиваемая энергия затрачивается на создание вредных процессов – нагрев, вибрации и т.п. В результате параллельно полезному процессу возникают вредные. Не всегда есть возможность заменить «плохой» процесс «хорошим», поэтому приходится организовывать новые процессы, направленные на компенсацию вредных для системы последствий. Характерный пример – необходимость борьбы с трением, вынуждающая организовывать хитроумные схемы смазки, применять дорогостоящие антифрикционные материалы или затрачивать время на смазку узлов и деталей или ее периодическую замену.

В связи с существованием неизбежного влияния переменчивой Среды полезный процесс может нуждаться в управлении. Управление может осуществляться как при помощи автоматических устройств, так и непосредственно человеком. Схема процессов фактически является набором специальных команд, т.е. алгоритмом. Сущность (описание) каждой команды составляет совокупность отдельно взятого полезного процесса, сопутствующих ему вредных процессов и набора необходимых управляющих процессов. В таком алгоритме набор обеспечивающих процессов является обычной подпрограммой – и здесь мы тоже обнаруживаем фрактал. Созданный четверть века назад метод Р.Коллера позволяет при создании систем обойтись достаточно ограниченным набором всего из 12 пар функций (процессов).

Самоподобные множества с необычными свойствами в математике

Начиная с конца XIX века, в математике появляются примеры самоподобных объектов с патологическими с точки зрения классического анализа свойствами. К ним можно отнести следующие:

    множество Кантора - нигде не плотное несчётное совершенное множество. Модифицировав процедуру, можно также получить нигде не плотное множество положительной длины.

    треугольник Серпинского («скатерть») и ковёр Серпинского - аналоги множества Кантора на плоскости.

    губка Менгера - аналог множества Кантора в трёхмерном пространстве;

    примеры Вейерштрасса и Ван дер Вардена нигде не дифференцируемой непрерывной функции.

    кривая Коха - несамопересекающаяся непрерывная кривая бесконечной длины, не имеющая касательной ни в одной точке;

    кривая Пеано - непрерывная кривая, проходящая через все точки квадрата.

    траектория броуновской частицы также с вероятностью 1 нигде не дифференцируема. Её хаусдорфова размерность равна двум

Рекурсивная процедура получения фрактальных кривых

Построение кривой Коха

Существует простая рекурсивная процедура получения фрактальных кривых на плоскости. Зададим произвольную ломаную с конечным числом звеньев, называемую генератором. Далее, заменим в ней каждый отрезок генератором (точнее, ломаной, подобной генератору). В получившейся ломаной вновь заменим каждый отрезок генератором. Продолжая до бесконечности, в пределе получим фрактальную кривую. На рисунке справа приведены четыре первых шага этой процедуры для кривой Коха.

Примерами таких кривых служат:

    кривая дракона,

    кривая Коха (снежинка Коха),

    кривая Леви,

    кривая Минковского,

    Кривая Гильберта,

    Ломаная (кривая) дракона (Фрактал Хартера-Хейтуэя),

    кривая Пеано.

С помощью похожей процедуры получается дерево Пифагора.

Фракталы как неподвижные точки сжимающих отображений

Свойство самоподобия можно математически строго выразить следующим образом. Пусть - сжимающие отображения плоскости. Рассмотрим следующее отображение на множестве всех компактных (замкнутых и ограниченных) подмножеств плоскости:

Можно показать, что отображение является сжимающим отображением на множестве компактов с метрикой Хаусдорфа. Следовательно, по теореме Банаха, это отображение имеет единственную неподвижную точку. Эта неподвижная точка и будет нашим фракталом.

Рекурсивная процедура получения фрактальных кривых, описанная выше, является частным случаем данной конструкции. В ней все отображения - отображения подобия, а - число звеньев генератора.

Для треугольника Серпинского и отображения , , - гомотетии с центрами в вершинах правильного треугольника и коэффициентом 1/2. Легко видеть, что треугольник Серпинского переходит в себя при отображении .

В случае, когда отображения - преобразования подобия с коэффициентами , размерность фрактала (при некоторых дополнительных технических условиях) может быть вычислена как решение уравнения . Так, для треугольника Серпинского получаем .

По той же теореме Банаха, начав с любого компактного множества и применяя к нему итерации отображения , мы получим последовательность компактов, сходящихся (в смысле метрики Хаусдорфа) к нашему фракталу.

Фракталы в комплексной динамике

Множество Жюлиа́

Ещё одно множество Жюлиа

Фракталы естественным образом возникают при изучении нелинейных динамических систем. Наиболее изучен случай, когда динамическая система задаётся итерациями многочлена или голоморфной функции комплексной переменной на плоскости. Первые исследования в этой области относятся к началу 20 века и связаны с именами Фату и Жюлиа.

Пусть F (z ) - многочлен, z 0 - комплексное число. Рассмотрим следующую последовательность: z 0 , z 1 =F (z 0), z 2 =F (F (z 0)) = F (z 1),z 3 =F (F (F (z 0)))=F (z 2), …

Нас интересует поведение этой последовательности при стремлении n к бесконечности. Эта последовательность может:

    стремиться к бесконечности,

    стремиться к конечному пределу,

    демонстрировать в пределе циклическое поведение, например: z 1 , z 2 , z 3 , z 1 , z 2 , z 3 , …

    вести себя хаотично, то есть не демонстрировать ни один из трёх упомянутых типов поведения.

Множества значений z 0 , для которых последовательность демонстрирует один конкретный тип поведения, а также множества точек бифуркации между различными типами, часто обладают фрактальными свойствами.

Так, множество Жюлиа - множество точек бифуркации для многочлена F (z )=z 2 +c (или другой похожей функции), то есть тех значений z 0 , для которых поведение последовательности {z n } может резко меняться при сколь угодно малых изменениях z 0 .

Другой вариант получения фрактальных множеств - введение параметра в многочлен F (z ) и рассмотрение множества тех значений параметра, при которых последовательность {z n } демонстрирует определённое поведение при фиксированном z 0 . Так, множество Мандельброта - это множество всех , при которых {z n } для F (z )=z 2 +c и z 0 не стремится к бесконечности.

Ещё один известный пример такого рода - бассейны Ньютона.

Популярно создание красивых графических образов на основе комплексной динамики путём раскрашивания точек плоскости в зависимости от поведения соответствующих динамических систем. Например, для дополнения множества Мандельброта можно раскрасить точки в зависимости от скорости стремления {z n } к бесконечности (определяемой, скажем, как наименьший номер n , при котором |z n | превысит фиксированную большую величину A .

Биоморфы - фракталы, построенные на основе комплексной динамики и напоминающие живые организмы.

Стохастические фракталы

Рандомизированный фрактал на основе множества Жюлиа

Природные объекты часто имеют фрактальную форму. Для их моделирования могут применяться стохастические (случайные) фракталы. Примеры стохастических фракталов:

    траектория броуновского движения на плоскости и в пространстве;

    граница траектории броуновского движения на плоскости. В 2001 году Лоулер, Шрамм и Вернер доказали предположение Мандельброта о том, что её размерность равна 4/3.

    эволюции Шрамма-Лёвнера - конформно-инвариантные фрактальные кривые, возникающие в критических двумерных моделяхстатистической механики, например, в модели Изинга и перколяции.

    различные виды рандомизированных фракталов, то есть фракталов, полученных с помощью рекурсивной процедуры, в которую на каждом шаге введён случайный параметр. Плазма - пример использования такого фрактала в компьютерной графике.

В природе

Вид спереди на трахею и бронхи

    Бронхиальное дерево

    Сеть кровеносных сосудов

Применение

Естественные науки

В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких, как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и т. п. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов).

Радиотехника

Фрактальные антенны

Использование фрактальной геометрии при проектировании антенных устройств было впервые применено американским инженером Натаном Коэном, который тогда жил в центреБостона, где была запрещена установка внешних антенн на здания. Натан вырезал из алюминиевой фольги фигуру в форме кривой Коха и наклеил её на лист бумаги, затем присоединил к приёмнику. Коэн основал собственную компанию и наладил их серийный выпуск.

Информатика

Сжатие изображений

Основная статья: Алгоритм фрактального сжатия

Фрактальное дерево

Существуют алгоритмы сжатия изображения с помощью фракталов. Они основаны на идее о том, что вместо самого изображения можно хранить сжимающее отображение, для которого это изображение (или некоторое близкое к нему) является неподвижной точкой. Один из вариантов данного алгоритма был использован [ источник не указан 895 дней ] фирмой Microsoft при издании своей энциклопедии, но большого распространения эти алгоритмы не получили.

Компьютерная графика

Ещё одно фрактальное дерево

Фракталы широко применяются в компьютерной графике для построения изображений природных объектов, таких как деревья, кусты, горные ландшафты, поверхности морей и так далее. Существует множество программ, служащих для генерации фрактальных изображений, см. Генератор фракталов (программа).

Децентрализованные сети

Система назначения IP-адресов в сети Netsukuku использует принцип фрактального сжатия информации для компактного сохранения информации об узлах сети. Каждый узел сети Netsukuku хранит всего 4 Кб информации о состоянии соседних узлов, при этом любой новый узел подключается к общей сети без необходимости в центральном регулировании раздачи IP-адресов, что, например, характерно для сети Интернет. Таким образом, принцип фрактального сжатия информации гарантирует полностью децентрализованную, а следовательно, максимально устойчивую работу всей сети.

Самые гениальные открытия в науке способны кардинально изменить человеческую жизнь. Изобретенная вакцина может спасти миллионы людей, создание оружия, наоборот, эти жизни отнимает. Совсем недавно (в масштабе человеческой эволюции) мы научились «укрощать» электричество — и теперь не можем себе представить жизнь без всех этих удобных устройств, использующих электроэнергию. Но есть и такие открытия, которым мало кто придает значение, хотя они тоже сильно влияют на нашу жизнь.

Одно из таких «незаметных» открытий — фракталы. Вам наверняка доводилось слышать это запоминающееся слово, но знаете ли вы, что оно означает и как много интересного скрыто в этом термине?

В каждом человеке заложена природная любознательность, стремление познавать окружающий его мир. И в этом стремлении человек старается придерживаться логики в суждениях. Анализируя процессы, происходящие вокруг него, он пытается найти логичность происходящего и вывести некоторую закономерность. Самые большие умы на планете заняты этой задачей. Грубо говоря, ученые ищут закономерность там, где ее быть не должно. Тем не менее даже в хаосе можно найти связь между событиями. И эта связь — фрактал.

Наша маленькая дочь, четырех с половиной лет, сейчас находится в том прекрасном возрасте, когда число вопросов «Почему?» многократно превышает число ответов, которые взрослые успевают давать. Не так давно, рассматривая поднятую с земли ветку, дочка вдруг заметила, что эта ветка, с сучками и ответвлениями, сама похожа на дерево. И, конечно, дальше последовал привычный вопрос «Почему?», на который родителям пришлось искать простое объяснение, понятное ребенку.

Обнаруженная ребенком схожесть отдельной веточки с целым деревом — это очень точное наблюдение, которое лишний раз свидетельствует о принципе рекурсивного самоподобия в природе. Очень многие органические и неорганические формы в природе формируются аналогично. Облака, морские раковины, «домик» улитки, кора и крона деревьев, кровеносная система и так далее — случайные формы всех этих объектов могут быть описаны фрактальным алгоритмом.

⇡ Бенуа Мандельброт: отец фрактальной геометрии

Само слово «фрактал» появилось благодаря гениальному ученому Бенуа Мандельброту (Benoît B. Mandelbrot).

Он сам придумал этот термин в семидесятых годах прошлого века, позаимствовав слово fractus из латыни, где оно буквально означает «ломанный» или «дробленный». Что же это такое? Сегодня под словом «фрактал» чаще всего принято подразумевать графическое изображение структуры, которая в более крупном масштабе подобна сама себе.

Математическая база для появления теории фракталов была заложена за много лет до рождения Бенуа Мандельброта, однако развиться она смогла лишь с появлением вычислительных устройств. В начале своей научной деятельности Бенуа работал в исследовательском центре компании IBM. В то время сотрудники центра трудились над передачей данных на расстояние. В ходе исследований ученые столкнулись с проблемой больших потерь, возникающих из-за шумовых помех. Перед Бенуа стояла сложная и очень важная задача — понять, как предсказать возникновение шумовых помех в электронных схемах, когда статистический метод оказывается неэффективным.

Просматривая результаты измерений шума, Мандельброт обратил внимание на одну странную закономерность — графики шумов в разном масштабе выглядели одинаково. Идентичная картина наблюдалась независимо от того, был ли это график шумов за один день, неделю или час. Стоило изменить масштаб графика, и картина каждый раз повторялась.

При жизни Бенуа Мандельброт неоднократно говорил, что он не занимается формулами, а просто играет с картинками. Этот человек мыслил очень образно, а любую алгебраическую задачу переводил в область геометрии, где, по его словам, правильный ответ всегда очевиден.

Неудивительно, что именно человек с таким богатым пространственным воображением стал отцом фрактальной геометрии. Ведь осознание сути фракталов приходит именно тогда, когда начинаешь изучать рисунки и вдумываться в смысл странных узоров-завихрений.

Фрактальный рисунок не имеет идентичных элементов, но обладает подобностью в любом масштабе. Построить такое изображение с высокой степенью детализации вручную ранее было просто невозможно, на это требовалось огромное количество вычислений. Например, французский математик Пьер Жозе Луи Фату (Pierre Joseph Louis Fatou) описал это множество более чем за семьдесят лет до открытия Бенуа Мандельбротом. Если же говорить про принципы самоподобия, то о них упоминалось еще в трудах Лейбница и Георга Кантора.

Один из первых рисунков фрактала был графической интерпретацией множества Мандельброта, которое родилось благодаря исследованиям Гастона Мориса Жюлиа (Gaston Maurice Julia).

Гастон Жюлиа (всегда в маске — травма с Первой мировой войны)

Этот французский математик задался вопросом, как будет выглядеть множество, если построить его на основе простой формулы, проитерированной циклом обратной связи. Если объяснить «на пальцах», это означает, что для конкретного числа мы находим по формуле новое значение, после чего подставляем его снова в формулу и получаем еще одно значение. Результат — большая последовательность чисел.

Чтобы получить полное представление о таком множестве, нужно проделать огромное количество вычислений — сотни, тысячи, миллионы. Вручную это сделать было просто нереально. Но когда в распоряжении математиков появились мощные вычислительные устройства, они смогли по-новому взглянуть на формулы и выражения, которые давно вызывали интерес. Мандельброт был первым, кто использовал компьютер для просчета классического фрактала. Обработав последовательность, состоящую из большого количества значений, Бенуа перенес результаты на график. Вот что он получил.

Впоследствии это изображение было раскрашено (например, один из способов окрашивания цветом — по числу итераций) и стало одним из самых популярных изображений, какие только были созданы человеком.

Как гласит древнее изречение, приписываемое Гераклиту Эфесскому, «В одну и ту же реку нельзя войти дважды». Оно как нельзя лучше подходит для трактования геометрии фракталов. Как бы детально мы ни рассматривали фрактальное изображение, мы все время будем видеть схожий рисунок.

Желающие посмотреть, как будет выглядеть изображение пространства Мандельброта при многократном увеличении, могут сделать это, загрузив анимационный GIF .

⇡ Лорен Карпентер: искусство, созданное природой

Теория фракталов скоро нашла практическое применение. Поскольку она тесно связана с визуализацией самоподобных образов, неудивительно, что первыми, кто взял на вооружение алгоритмы и принципы построения необычных форм, были художники.

Будущий сооснователь легендарной студии Pixar Лорен Карпентер (Loren C. Carpenter) в 1967 году начал работать в компании Boeing Computer Services, которая была одним из подразделений известной корпорации, занимающейся разработкой новых самолетов.

В 1977 году он создавал презентации с прототипами летающих моделей. В обязанности Лорена входила разработка изображений проектируемых самолетов. Он должен был создавать картинки новых моделей, показывая будущие самолеты с разных сторон. В какой-то момент в голову будущему основателю Pixar Animation Studios пришла в голову креативная идея использовать в качестве фона изображение гор. Сегодня такую задачу может решить любой школьник, но в конце семидесятых годов прошлого века компьютеры не могли справиться со столь сложными вычислениями — графических редакторов не было, не говоря уже о приложениях для трехмерной графики. В 1978 году Лорен случайно увидел в магазине книгу Бенуа Мандельброта «Фракталы: форма, случайность и размерность». В этой книге его внимание привлекло то, что Бенуа приводил массу примеров фрактальных форм в реальной жизни и доказывал, что их можно описать математическим выражением.

Такая аналогия была выбрана математиком не случайно. Дело в том, что как только он обнародовал свои исследования, ему пришлось столкнуться с целым шквалом критики. Главное, в чем упрекали его коллеги, — бесполезность разрабатываемой теории. «Да, — говорили они, — это красивые картинки, но не более. Практической ценности теория фракталов не имеет». Были также те, кто вообще считал, что фрактальные узоры — просто побочный результат работы «дьявольских машин», которые в конце семидесятых многим казались чем-то слишком сложным и неизученным, чтобы всецело им доверять. Мандельброт пытался найти очевидное применение теории фракталов, но, по большому счету, ему и не нужно было это делать. Последователи Бенуа Мандельброта в следующие 25 лет доказали огромную пользу от подобного «математического курьеза», и Лорен Карпентер был одним из первых, кто опробовал метод фракталов на практике.

Проштудировав книжку, будущий аниматор серьезно изучил принципы фрактальной геометрии и стал искать способ реализовать ее в компьютерной графике. Всего за три дня работы Лорен смог визуализировать реалистичное изображение горной системы на своем компьютере. Иными словами, он с помощью формул нарисовал вполне узнаваемый горный пейзаж.

Принцип, который использовал Лорен для достижения цели, был очень прост. Он состоял в том, чтобы разделять более крупную геометрическую фигуру на мелкие элементы, а те, в свою очередь, делить на аналогичные фигуры меньшего размера.

Используя более крупные треугольники, Карпентер дробил их на четыре мелких и затем повторял эту процедуру снова и снова, пока у него не получался реалистичный горный ландшафт. Таким образом, ему удалось стать первым художником, применившим в компьютерной графике фрактальный алгоритм для построения изображений. Как только стало известно о проделанной работе, энтузиасты по всему миру подхватили эту идею и стали использовать фрактальный алгоритм для имитации реалистичных природных форм.

Одна из первых визуализаций 3D по фрактальному алгоритму

Всего через несколько лет свои наработки Лорен Карпентер смог применить в куда более масштабном проекте. Аниматор создал на их основе двухминутный демонстрационный ролик Vol Libre, который был показан на Siggraph в 1980 году. Это видео потрясло всех, кто его видел, и Лоурен получил приглашение от Lucasfilm.

Анимация рендерилась на компьютере VAX-11/780 от Digital Equipment Corporation с тактовой частотой пять мегагерц, причем прорисовка каждого кадра занимала около получаса.

Работая для Lucasfilm Limited, аниматор создавал по той же схеме трехмерные ландшафты для второго полнометражного фильма саги Star Trek. В фильме «Гнев Хана» (The Wrath of Khan) Карпентер смог создать целую планету, используя тот же самый принцип фрактального моделирования поверхности.

В настоящее время все популярные приложения для создания трехмерных ландшафтов используют аналогичный принцип генерирования природных объектов. Terragen, Bryce, Vue и прочие трехмерные редакторы полагаются на фрактальный алгоритм моделирования поверхностей и текстур.

⇡ Фрактальные антенны: лучше меньше, да лучше

За последние полвека жизнь стремительно стала меняться. Большинство из нас принимает достижения современных технологий как должное. Ко всему, что делает жизнь более комфортной, привыкаешь очень быстро. Редко кто задается вопросами «Откуда это взялось?» и «Как оно работает?». Микроволновая печь разогревает завтрак — ну и прекрасно, смартфон дает возможность поговорить с другим человеком — отлично. Это кажется нам очевидной возможностью.

Но жизнь могла бы быть совершенно иной, если бы человек не искал объяснения происходящим событиям. Взять, например, сотовые телефоны. Помните выдвижные антенны на первых моделях? Они мешали, увеличивали размеры устройства, в конце концов, часто ломались. Полагаем, они навсегда канули в Лету, и отчасти виной тому… фракталы.

Фрактальные рисунки завораживают своими узорами. Они определенно напоминают изображения космических объектов — туманностей, скопления галактик и так далее. Поэтому вполне закономерно, что, когда Мандельброт озвучил свою теорию фракталов, его исследования вызвали повышенный интерес у тех, кто занимался изучением астрономии. Один из таких любителей по имени Натан Коэн (Nathan Cohen) после посещения лекции Бенуа Мандельброта в Будапеште загорелся идеей практического применения полученных знаний. Правда, сделал он это интуитивно, и не последнюю роль в его открытии сыграл случай. Будучи радиолюбителем, Натан стремился создать антенну, обладающую как можно более высокой чувствительностью.

Единственный способ улучшить параметры антенны, который был известен на то время, заключался в увеличении ее геометрических размеров. Однако владелец жилья в центре Бостона, которое арендовал Натан, был категорически против установки больших устройств на крыше. Тогда Натан стал экспериментировать с различными формами антенн, стараясь получить максимальный результат при минимальных размерах. Загоревшись идеей фрактальных форм, Коэн, что называется, наобум сделал из проволоки один из самых известных фракталов — «снежинку Коха». Шведский математик Хельге фон Кох (Helge von Koch) придумал эту кривую еще в 1904 году. Она получается путем деления отрезка на три части и замещения среднего сегмента равносторонним треугольником без стороны, совпадающей с этим сегментом. Определение немного сложное для восприятия, но на рисунке все ясно и просто.

Существуют также другие разновидности «кривой Коха», но примерная форма кривой остается похожей

Когда Натан подключил антенну к радиоприемному устройству, он был очень удивлен — чувствительность резко увеличилась. После серии экспериментов будущий профессор Бостонского университета понял, что антенна, сделанная по фрактальному рисунку, имеет высокий КПД и покрывает гораздо более широкий частотный диапазон по сравнению с классическими решениями. Кроме того, форма антенны в виде кривой фрактала позволяет существенно уменьшить геометрические размеры. Натан Коэн даже вывел теорему, доказывающую, что для создания широкополосной антенны достаточно придать ей форму самоподобной фрактальной кривой.

Автор запатентовал свое открытие и основал фирму по разработке и проектированию фрактальных антенн Fractal Antenna Systems , справедливо полагая, что в будущем благодаря его открытию сотовые телефоны смогут избавиться от громоздких антенн и станут более компактными.

В принципе, так и произошло. Правда, и по сей день Натан ведет судебную тяжбу с крупными корпорациями, которые незаконно используют его открытие для производства компактных устройств связи. Некоторые известные производители мобильных устройств, как, например, Motorola, уже пришли к мирному соглашению с изобретателем фрактальной антенны.

⇡ Фрактальные измерения: умом не понять

Этот вопрос Бенуа позаимствовал у знаменитого американского ученого Эдварда Каснера.

Последний, как и многие другие известные математики, очень любил общаться с детьми, задавая им вопросы и получая неожиданные ответы. Иногда это приводило к удивительным последствиям. Так, например, девятилетний племянник Эдварда Каснера придумал хорошо всем известное теперь слово «гугол», обозначающее единицу со ста нулями. Но вернемся к фракталам. Американский математик любил задавать вопрос, какова длина береговой линии США. Выслушав мнение собеседника, Эдвард сам говорил правильный ответ. Если измерять длину по карте ломаными отрезками, то результат окажется неточным, ведь береговая линия имеет большое количество неровностей. А что будет, если измерять максимально точно? Придется учитывать длину каждой неровности — нужно будет измерять каждый мыс, каждую бухту, скалу, длину скалистого уступа, камня на ней, песчинки, атома и так далее. Поскольку число неровностей стремится к бесконечности, измеренная длина береговой линии будет при измерении каждой новой неровности увеличиваться до бесконечности.

Чем меньше мера при измерении, тем больше измеряемая длина

Интересно, что, следуя подсказкам Эдварда, дети намного быстрее взрослых говорили правильное решение, в то время как у последних были проблемы с принятием такого невероятного ответа.

На примере этой задачи Мандельброт предложил использовать новый подход к измерениям. Поскольку береговая линия близка к фрактальной кривой, значит, к ней можно применить характеризующий параметр — так называемую фрактальную размерность.

Что такое обычная размерность — понятно любому. Если размерность равна единице, мы получаем прямую, если два — плоскую фигуру, три — объем. Однако такое понимание размерности в математике не срабатывает с фрактальными кривыми, где этот параметр имеет дробное значение. Фрактальную размерность в математике можно условно рассматривать как «неровность». Чем выше неровность кривой, тем больше ее фрактальная размерность. Кривая, обладающая, по Мандельброту, фрактальной размерностью выше ее топологической размерности, имеет аппроксимированную протяженность, которая не зависит от количества измерений.

В настоящее время ученые находят все больше и больше областей для применения теории фракталов. С помощью фракталов можно анализировать колебания котировок на бирже, исследовать всевозможные естественные процессы, как, например, колебание численности видов, или моделировать динамику потоков. Фрактальные алгоритмы могут быть использованы для сжатия данных, например для компрессии изображений. И кстати, чтобы получить на экране своего компьютера красивый фрактал, не обязательно иметь докторскую степень.

⇡ Фрактал в браузере

Пожалуй, один из самых простых способов получить фрактальный узор — воспользоваться онлайновым векторным редактором от молодого талантливого программиста Toby Schachman . В основе инструментария этого простого графического редактора лежит все тот же принцип самоподобия.

В вашем распоряжении имеется всего две простейших формы — четырехугольник и круг. Вы можете добавлять их на холст, масштабировать (чтобы масштабировать вдоль одной из осей, удерживайте клавишу Shift) и вращать. Перекрываясь по принципу булевых операций сложения, эти простейшие элементы образуют новые, менее тривиальные формы. Далее эти новые формы можно добавлять в проект, а программа будет повторять генерирование этих изображений до бесконечности. На любом этапе работы над фракталом можно возвращаться к любой составляющей сложной формы и редактировать ее положение и геометрию. Увлекательное занятие, особенно если учесть, что единственный инструмент, который вам нужен для творчества, — браузер. Если вам будет непонятен принцип работы с этим рекурсивным векторным редактором, советуем вам посмотреть видео на официальном сайте проекта, на котором подробно показывается весь процесс создания фрактала.

⇡ XaoS: фракталы на любой вкус

Многие графические редакторы имеют встроенные средства для создания фрактальных узоров. Однако эти инструменты обычно являются второстепенными и не позволяют выполнить тонкую настройку генерируемого фрактального узора. В тех случаях, когда необходимо построить математически точный фрактал, на помощь придет кроссплатформенный редактор XaoS . Эта программа дает возможность не только строить самоподобное изображение, но и выполнять с ним различные манипуляции. Например, в режиме реального времени вы можете совершить «прогулку» по фракталу, изменив его масштаб. Анимированное движение вдоль фрактала можно сохранить в виде файла XAF и затем воспроизвести в самой программе.

XaoS может загружать случайный набор параметров, а также использовать различные фильтры постобработки изображения — добавлять эффект смазанного движения, сглаживать резкие переходы между точками фрактала, имитировать 3D-картинку и так далее.

⇡ Fractal Zoomer: компактный фрактальный генератор

По сравнению с другими генераторами изображений фракталов имеет несколько преимуществ. Во-первых, он совсем небольшой по размеру и не требует установки. Во-вторых, в нем реализована возможность определять цветовую палитру рисунка. Вы можете выбирать оттенки в цветовых моделях RGB, CMYK, HVS и HSL.

Также очень удобно использовать опцию случайного подбора цветовых оттенков и функцию инвертирования всех цветов на картинке. Для настройки цвета имеется функция цикличного перебора оттенков — при включении соответствующего режима программа анимирует изображение, циклично меняя на нем цвета.

Fractal Zoomer может визуализировать 85 различных фрактальных функций, причем в меню программы наглядно показываются формулы. Фильтры для постобработки изображения в программе имеются, хотя и в небольшом количестве. Каждый назначенный фильтр можно в любой момент отменить.

⇡ Mandelbulb3D: редактор трехмерных фракталов

Когда употребляется термин «фрактал», чаще всего подразумевается плоское двухмерное изображение. Однако фрактальная геометрия выходит за рамки 2D-измерения. В природе можно найти как примеры плоских фрактальных форм, скажем, геометрию молнии, так и трехмерные объемные фигуры. Фрактальные поверхности могут быть трехмерными, и одна из очень наглядных иллюстраций 3D-фракталов в повседневной жизни — кочан капусты. Наверное, лучше всего фракталы можно разглядеть в сорте романеско — гибриде цветной капусты и брокколи.

А еще этот фрактал можно съесть

Создавать трехмерные объекты с похожей формой умеет программа Mandelbulb3D . Чтобы получить трехмерную поверхность с использованием фрактального алгоритма, авторы данного приложения, Дениэл Уайт (Daniel White) и Пол Ниландер (Paul Nylander), преобразовали множество Мандельброта в сферические координаты. Созданная ими программа Mandelbulb3D представляет собой самый настоящий трехмерный редактор, который моделирует фрактальные поверхности разных форм. Поскольку в природе мы часто наблюдаем фрактальные узоры, то искусственно созданный фрактальный трехмерный объект кажется невероятно реалистичным и даже «живым».

Он может походить на растение, может напоминать странное животное, планету или что-нибудь другое. Этот эффект усиливается благодаря продвинутому алгоритму визуализации, который дает возможность получать реалистичные отражения, просчитывать прозрачность и тени, имитировать эффект глубины резкости и так далее. В Mandelbulb3D имеется огромное количество настроек и параметров визуализации. Можно управлять оттенками источников света, выбирать фон и уровень детализации моделируемого объекта.

Фрактальный редактор Incendia поддерживает двойное сглаживание изображения, содержит библиотеку из полусотни различных трехмерных фракталов и имеет отдельный модуль для редактирования базовых форм.

Приложение использует фрактальный скриптинг, с помощью которого можно самостоятельно описывать новые типы фрактальных конструкций. В Incendia есть редакторы текстур и материалов, а движок визуализации позволяет использовать эффекты объемного тумана и различные шейдеры. В программе реализована опция сохранения буфера при длительном рендеринге, поддерживается создание анимации.

Incendia позволяет экспортировать фрактальную модель в популярные форматы трехмерной графики — OBJ и STL. В состав Incendia включена небольшая утилита Geometrica — специальный инструмент для настройки экспорта фрактальной поверхности в трехмерную модель. С помощью этой утилиты можно определять разрешение 3D-поверхности, указывать число фрактальных итераций. Экспортированные модели могут быть использованы в 3D-проектах при работе с такими трехмерными редакторами, как Blender, 3ds max и прочие.

В последнее время работа над проектом Incendia несколько затормозилась. На данный момент автор ищет спонсоров, которые помогли бы ему развивать программу.

Если вам не хватает фантазии нарисовать в этой программе красивый трехмерный фрактал — не беда. Воспользуйтесь библиотекой параметров, которая находится в папке INCENDIA_EX\parameters. С помощью файлов PAR вы сможете быстро найти самые необычные фрактальные формы, в том числе и анимированные.

⇡ Aural: как поют фракталы

Мы обычно не рассказываем о проектах, работа над которыми только ведется, однако в данном случае мы должны сделать исключение, уж очень это необычное приложение. Проект под названием Aural придумал тот же человек, что и Incendia. Правда, на этот раз программа не визуализирует фрактальное множество, а озвучивает его, превращая в электронную музыку. Идея очень любопытная, особенно если учесть необычные свойства фракталов. Aural — это аудиоредактор, генерирующий мелодии с использованием фрактальных алгоритмов, то есть, по сути, это звуковой синтезатор-секвенсор.

Последовательность звуков, выдаваемая этой программой, необычна и… красива. Она вполне может пригодиться для написания современных ритмов и, как нам кажется, особенно хорошо подходит для создания звуковых дорожек к заставкам телевизионных и радиопередач, а также «петель» фоновой музыки к компьютерным играм. Рамиро пока не предоставил демонстрационной версии своей программы, но обещает, что, когда он это сделает, для того, чтобы работать с Aural, не нужно будет изучать теорию фракталов — достаточно просто поиграться с параметрами алгоритма генерирования последовательности нот. Послушать, как звучат фракталы, и .

Фракталы: музыкальная пауза

Вообще-то фракталы могут помочь написать музыку даже без программного обеспечения. Но это может сделать только тот, кто по-настоящему проникнут идеей природной гармонии и при этом не превратился в несчастного «ботана». Тут есть смысл брать пример с музыканта по имени Джонатан Колтон (Jonathan Coulton), который, помимо всего прочего, пишет композиции для журнала Popular Science. И не в пример другим исполнителям, Колтон все свои произведения публикует под лицензией Creative Commons Attribution-Noncommercial, которая (при использовании в некоммерческих целях) предусматривает свободное копирование, распространение, передачу произведения другим лицам, а также его изменение (создание производных произведения), чтобы приспособить его к своим задачам.

У Джонатана Колтона, конечно же, есть песня про фракталы.

⇡ Заключение

Во всем, что нас окружает, мы часто видим хаос, но на самом деле это не случайность, а идеальная форма, разглядеть которую нам помогают фракталы. Природа — лучший архитектор, идеальный строитель и инженер. Она устроена очень логично, и если где-то мы не видим закономерности, это означает, что ее нужно искать в другом масштабе. Люди все лучше и лучше это понимают, стараясь во многом подражать естественным формам. Инженеры проектируют акустические системы в виде раковины, создают антенны с геометрией снежинок и так далее. Уверены, что фракталы хранят в себе еще немало секретов, и многие из них человеку еще лишь предстоит открыть.

Муниципальное бюджетное образовательное учреждение

«Сиверская средняя общеобразовательная школа №3»

Исследовательская работа

по математике.

Выполнил работу

ученик 8-1 класса

Емелин Павел

Научный руководитель

учитель математики

Тупицына Наталья Алексеевна

п. Сиверский

2014 год

Математика вся пронизана красотой и гармонией,

Только эту красоту надо увидеть.

Б. Мандельброт

Введение____________________________________3-4стр.

Глава 1.история возникновения фракталов._______5-6стр.

Глава 2. Классификация фракталов._____________6-10стр.

Геометрические фракталы

Алгебраические фракталы

Стохастические фракталы

Глава 3."Фрактальная геометрия природы"______11-13стр.

Глава 4. Применение фракталов_______________13-15стр.

Глава 5 Практические работы__________________16-24стр.

Заключение_________________________________25.стр

Список литературы и интернет ресурсов________26стр.

Введение

Математика,

если на нее правильно посмотреть,

отражает не только истину,

но и несравненную красоту.

Бертранд Рассел


Слово “фрактал” - это что-то, о чем много людей говорит в наши дни, от ученых до учеников средней школы. Оно появляется на обложках многих учебников математики, научных журналов и коробках с компьютерным программным обеспечением. Цветные изображения фракталов сегодня можно найти везде: от открыток, футболок до картинок на рабочем столе персонального компьютера. Итак, что это за цветные формы, которые мы видим вокруг?

Математика – древнейшая наука. Большинству людей казалось, что геометрия в природе ограничивается такими простыми фигурами, как линия, круг, многоугольник, сфера и т.д. Как оказалось многие природные системы настолько сложны, что использование только знакомых объектов обычной геометрии для их моделирования представляется безнадежным. Как, к примеру, построить модель горного хребта или кроны дерева в терминах геометрии? Как описать то многообразие биологических разнообразий, которое мы наблюдаем в мире растений и животных? Как представить всю сложность системы кровообращения, состоящей из множества капилляров и сосудов и доставляющей кровь к каждой клеточке человеческого тела? Представить строение легких и почек, напоминающие по структуре деревья с ветвистой кроной?

Фракталы - подходящие средства для исследования поставленных вопросов. Нередко то, что мы видим в природе, интригует нас бесконечным повторением одного и того же узора, увеличенного или уменьшенного во сколько-то раз. Например, у дерева есть ветви. На этих ветвях есть ветки поменьше и т.д. Теоретически, элемент «разветвление» повторяется бесконечно много раз, становясь все меньше и меньше. То же самое можно заметить, разглядывая фотографию горного рельефа. Попробуйте немного приблизить изображение горной гряды --- вы снова увидите горы. Так проявляется характерное для фракталов свойство самоподобия.

Изучение фракталов открывает замечательные возможности, как в исследовании бесконечного числа приложений, так и в области математики. Применение фракталов очень обширно! Ведь эти объекты настолько красивы, что их используют дизайнеры, художники, с помощью них в графике рисуются многие элементы деревья, облака, горы и т.д. А ведь фракталы используются даже как антенны во многих сотовых телефонах.

Для многих хаологов (ученых изучающих фракталы и хаос) – это не просто новая область познания, которая объединяет математику, теоретическую физику, искусство и компьютерные технологии - это революция. Это открытие нового типа геометрии, той геометрии, которая описывает мир вокруг нас и которую можно увидеть не только в учебниках, но и в природе и везде в безграничной вселенной .

В своей работе я тоже решил «прикоснуться» к миру прекрасного и определил для себя…

Цель работы : создание объектов, образы которых весьма похожи на природные.

Методы исследования : сравнительный анализ, синтез, моделирование.

Задачи :

    знакомство с понятием, историей возникновения и исследованиями Б.Мандельброта,

Г. Коха, В. Серпинского и др.;

    знакомство с различными видами фрактальных множеств;

    изучение научно-популярной литературы по данному вопросу, знакомство с

научными гипотезами;

    нахождение подтверждения теории фрактальности окружающего мира;

    изучение применения фракталов в других науках и на практике;

    проведение эксперимента по созданию собственных фрактальных изображений.

Основополагающий вопрос работы:

Показать, что математика не сухой, бездушный предмет, она может выражать духовный мир человека в отдельности и в обществе в целом.

Предмет исследования : Фрактальная геометрия.

Объект исследования : фракталы в математике и в реальном мире.

Гипотеза : Все, что существует в реальном мире, является фракталом.

Методы исследования : аналитический, поисковый.

Актуальность заявленной темы определяется, в первую очередь, предметом исследования, в качестве которого выступает фрактальная геометрия.

Ожидаемые результаты: В ходе работы, я смогу расширить свои знания в области математики, увидеть красоту фрактальной геометрии, начать работу по созданию своих фракталов.

Итогом работы будет создание компьютерной презентации, бюллетеня и буклета.

Глава 1.История возникновения

Бенуа Мандельброт

Понятие «фрактал» придумал Бенуа Мандельброт. Слово происходит от латинского «fractus», означающего «сломанный, разбитый».

Фрактал (лат. fractus - дробленый, сломанный, разбитый) - термин, означающий сложную геометрическую фигуру, обладающую свойством самоподобия, то есть составленную из нескольких частей, каждая из которых подобна всей фигуре целиком.

Для математических объектов, к которым оно относится, характерны чрезвычайно интересные свойства. В обычной геометрии линия имеет одно измерение, поверхность - два измерения, а пространственная фигура трехмерна. Фракталы же - это не линии и не поверхности, а, если можно это себе представить, нечто среднее. С ростом размеров возрастает и объем фрактала, но его размерность (показатель степени) - величина не целая, а дробная, а потому граница фрактальной фигуры не линия: при большом увеличении становится видно, что она размыта и состоит из спиралей и завитков, повторяющих в малом масштабе саму фигуру. Такая геометрическая регулярность называется масштабной инвариантностью или самоподобием. Она-то и определяет дробную размерность фрактальных фигур.

До появления фрактальной геометрии наука имела дело с системами, заключенными в трех пространственных измерениях. Благодаря Эйнштейну стало понятно, что трехмерное пространство - только модель действительности, а не сама действительность. Фактически наш мир расположен в четырехмерном пространственно-временном континууме.
Благодаря Мандельброту стало понятно, как выглядит четырехмерное пространство, образно выражаясь, фрактальное лицо Хаоса. Бенуа Мандельброт обнаружил, что четвертое измерение включает в себя не только первые три измерения, но и (это очень важно!) интервалы между ними.

Рекурсивная (или фрактальная) геометрия идет на смену Евклидовой. Новая наука способна описать истинную природу тел и явлений. Евклидова геометрия имела дело только с искусственными, воображаемыми объектами, принадлежащими трем измерениям. В реальность их способно превратить только четвертое измерение.

Жидкость, газ, твердое тело - три привычных физических состояния вещества, существующего в трехмерном мире. Но какова размерность клуба дыма, облака, точнее, их границ, непрерывно размываемых турбулентным движением воздуха?

В основном фракталы классифицируют по трём группам:

    Алгебраические фракталы

    Стохастические фракталы

    Геометрические фракталы

Рассмотрим подробнее каждую из них.

Глава 2. Классификация фракталов

Геометрические фракталы

Бенуа Мандельброт предложил модель фрактала, которая уже стала классической и часто используется для демонстрации, как типичного примера самого фрактала, так и для демонстрации красоты фракталов, которая также привлекает исследователей, художников, просто интересующихся людей.

Именно с них и начиналась история фракталов. Этот тип фракталов получается путем простых геометрических построений. Обычно при построении этих фракталов поступают так: берется "затравка" - аксиома - набор отрезков, на основании которых будет строиться фрактал. Далее к этой "затравке" применяют набор правил, который преобразует ее в какую-либо геометрическую фигуру. Далее к каждой части этой фигуры применяют опять тот же набор правил. С каждым шагом фигура будет становиться все сложнее и сложнее, и если мы проведем (по крайней мере, в уме) бесконечное количество преобразований - получим геометрический фрактал.

Фракталы этого класса самые наглядные, потому что в них сразу видна самоподобность при любых масштабах наблюдения. В двухмерном случае такие фракталы можно получить, задав некоторую ломаную, называемую генератором. За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры (а, точнее, при переходе к пределу) получается фрактальная кривая. При видимой сложности полученной кривой, её общий вид задается только формой генератора. Примерами таких кривых служат: кривая Коха (Рис.7), кривая Пeано (Рис.8), кривая Минковского.

В начале ХХ века математики искали такие кривые, которые ни в одной точке не имеют касательной. Это означало, что кривая резко меняет свое направление, и притом с колоссально большой скоростью (производная равна бесконечности). Поиски данных кривых были вызваны не просто праздным интересом математиков. Дело в том, что в начале ХХ века очень бурно развивалась квантовая механика. Исследователь М.Броун зарисовал траекторию движения взвешенных частиц в воде и объяснил это явление так: беспорядочно движущиеся атомы жидкости ударяются о взвешенные частицы и тем самым приводят их в движение. После такого объяснения броуновского движения перед учеными встала задача найти такую кривую, которая бы наилучшим образом показывала движение броуновских частиц. Для этого кривая должна была отвечать следующим свойствам: не иметь касательной ни в одной точке. Математик Кох предложил одну такую кривую.

Кривая Коха является типичным геометрическим фракталом. Процесс её построения выглядит следующим образом: берём единичный отрезок, разделяем на три равные части и заменяем средний интервал равносторонним треугольником без этого сегмента. В результате образуется ломаная, состоящая из четырех звеньев длины 1/3. На следующем шаге повторяем операцию для каждого из четырёх получившихся звеньев и т. д…

Предельная кривая и есть кривая Коха.


Снежинка Коха. Выполнив аналогичные преобразование на сторонах равностороннего треугольника можно получить фрактальное изображение снежинки Коха.

Т
акже ещё одним несложным представителем геометрического фрактала является квадрат Серпинского. Строится он довольно таки просто: Квадрат делится прямыми, параллельными его сторонам, на 9 равных квадратов. Из квадрата удаляется центральный квадрат. Получается множество, состоящее из 8 оставшихся квадратов "первого ранга". Поступая точно так же с каждым из квадратов первого ранга, получим множесто, состоящее из 64 квадратов второго ранга. Продолжая этот процесс бесконечно, получим бесконечную последовательность или квадрат Серпинского.

Алгебраические фракталы

Это самая крупная группа фракталов. Алгебраические фракталы получили свое название за то, что их строят, используя простые алгебраические формулы.

Получают их с помощью нелинейных процессов в n -мерных пространствах. Известно, что нелинейные динамические системы обладают несколькими устойчивыми состояниями. То состояние, в котором оказалась динамическая система после некоторого числа итераций, зависит от ее начального состояния. Поэтому каждое устойчивое состояние (или как говорят - аттрактор) обладает некоторой областью начальных состояний, из которых система обязательно попадет в рассматриваемые конечные состояния. Таким образом, фазовое пространство системы разбивается на области притяжения аттракторов. Если фазовым является двухмерное пространство, то окрашивая области притяжения различными цветами, можно получить цветовой фазовый портрет этой системы (итерационного процесса). Меняя алгоритм выбора цвета, можно получить сложные фрактальные картины с причудливыми многоцветными узорами. Неожиданностью для математиков стала возможность с помощью примитивных алгоритмов порождать очень сложные структуры.



В качестве примера рассмотрим множество Мандельброта. Строят его с помощью комплексных чисел.

Участок границы множества Мандельброта, увеличенный в 200 раз.

Множеству Мандельброта принадлежат точки, которые в течение бесконечного числа итераций не уходят в бесконечность (точки, имеющие черный цвет). Точки, принадлежащие границе множества (именно там возникает сложные структуры) уходят в бесконечность за конечное число итераций, а точки, лежащие за пределами множества, уходят в бесконечность через несколько итераций (белый фон).

П



ример другого алгебраического фрактала – множество Жюлиа. Существует 2 разновидности этого фрактала. Удивительно, но множества Жюлиа образуются по той же самой формуле, что и множество Мандельброта. Множество Жюлиа было изобретено французским математиком Гастоном Жюлиа, по имени которого и было названо множество.

И
нтересный факт
, некоторые алгебраические фракталы поразительным образом напоминают изображения животных, растений и других биологических объектов, вследствие чего получили название биоморфов.

Стохастические фракталы

Еще одним известным классом фракталов являются стохастические фракталы, которые получаются в том случае, если в итерационном процессе случайным образом менять какие-либо его параметры. При этом получаются объекты очень похожие на природные - несимметричные деревья, изрезанные береговые линии и т.д.

Типичным представителем этой группы фракталов является «плазма».

Д
ля ее построения берется прямоугольник и для каждого его угла определяется цвет. Далее находится центральная точка прямоугольника и раскрашивается в цвет равный среднему арифметическому цветов по углам прямоугольника плюс некоторое случайное число. Чем больше случайное число - тем более "рваным" будет рисунок. Если же предположить, что цвет точки это высота над уровнем моря - получим вместо плазмы - горный массив. Именно на этом принципе моделируются горы в большинстве программ. С помощью алгоритма, похожего на плазму строится карта высот, к ней применяются различные фильтры, накладывается текстура и фотореалистичные горы готовы

Е
сли посмотреть на этот фрактал в разрезе то мы увидим этот фрактал объемный, и имеет «шероховатость», как раз из-за этой «шероховатости» есть очень важное применение этого фрактала.

Допустим нужно описать форму горы. Обычные фигуры из Евклидовой геометрии тут не помогут, ведь они не учитывают рельеф поверхности. Но при совмещении обычной геометрии с фрактальной можно получить ту самую «шероховатость» горы. На обычный конус нужно наложить плазму и мы получим рельеф горы. Такие операции можно выполнять со многими другими объектами в природе, благодаря стохастическим фракталам можно описать саму природу.

Теперь поговорим о геометрических фракталах.

.

Глава 3 "Фрактальная геометрия природы"

" Почему геометрию часто называют "холодной" и "сухой"? Одна из причин заключается в ее неспособности описать форму облака, горы, береговой линии или дерева. Облака - не сферы, горы - не конусы, береговые линии - не окружности, древесная кора не гладкая, молния распространяется не по прямой. В более общем плане я утверждаю, что многие объекты в Природе настолько иррегулярные и фрагментированы, что по сравнению с Евклидом - термин, который в этой работе означает всю стандартную геометрию, - Природа обладает не просто большей сложностью, а сложностью совершенно иного уровня. Число различных масштабов длины природных объектов для всех практических целей бесконечно".

(Бенуа Мандельброт "Фрактальная геометрия природы").

Красота фракталов двояка: она услаждает глаз, о чем свидетельствует хотя бы обошедшая весь мир выставка фрактальных изображений, организованная группой бременских математиков под руководством Пайтгена и Рихтера. Позднее экспонаты этой грандиозной выставки были запечатлены в иллюстрациях к книге тех же авторов "Красота фракталов". Но существует и другой, более абстрактный или возвышенный, аспект красоты фракталов, открытый, по словам Р. Фейнмана, только умственному взору теоретика, в этом смысле фракталы прекрасны красотой трудной математической задачи. Бенуа Мандельброт указал современникам (и, надо полагать, потомкам) на досадный пробел в "Началах" Евклида, по которому, не замечая упущения, почти два тысячелетия человечества постигало геометрию окружающего мира и училось математической строгости изложения. Разумеется, оба аспекта красоты фракталов тесно взаимосвязаны и не исключают, а взаимно дополняют друг друга, хотя каждый из них самодостаточен.

Фрактальная геометрия природы по Мандельброту - самая настоящая геометрия, удовлетворяющая определению геометрии, предложенному в "Эрлангенскрй программе" Ф. Клейна. Дело в том, что до появления неевклидовой геометрии Н.И. Лобачевского - Л. Больяи, существовала только одна геометрия - та, которая была изложена в "Началах", и вопрос о том, что такое геометрия и какая из геометрий является геометрией реального мира, не возникал, да и не мог возникнуть. Но с появлением еще одной геометрии возник вопрос, что такое геометрия вообще, и какая из множества геометрий отвечает реальному миру. По Ф.Клейну, геометрия занимается изучением таких свойств объектов, которые инвариантны относительно преобразований: евклидова - инвариантов группы движений (преобразований, не изменяющих расстояния между любыми двумя точками, т.е. представляющих суперпозицию параллельных переносов и вращений с изменением или без изменения ориентации), геометрия Лобачевского-Больяи - инвариантов группы Лоренца. Фрактальная геометрия занимается изучением инвариантов группы самоаффинных преобразований, т.е. свойств, выражаемых степенными законами.

Что же касается соответствия реальному миру, то фрактальная геометрия описывает весьма широкий класс природных процессов и явлений, и поэтому мы можем вслед за Б.Мандельбротом с полным правом говорить о фрактальной геометрии природы. Новые - фрактальные объекты обладают необычными свойствами. Длины, площади и объемы одних фракталов равны нулю, других - обращаются в бесконечность.

Природа зачастую создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что просто замираешь от восхищения. И вот их примеры:


Морские раковины


Молнии восхищают своей красотой. Фракталы, созданные молнией не произвольны и не регулярны


Фрактальная форма подвида цветной капусты (Brassica cauliflora). Это особый вид является особенно симметричным фракталом.

Папоротник так же является хорошим примером фрактала среди флоры.


Павлины всем известны своим красочным опереньем, в котором спрятаны сплошные фракталы.


Лёд, морозные узоры на окнах это тоже фракталы


О
т увеличенного изображения листочка , до ветвей дерева - во всём можно обнаружить фракталы

Фракталы есть везде и всюду в окружающей нас природе. Вся Вселенная построена по удивительно гармоничным законам с математической точностью. Разве можно после этого думать, что наша планета это случайное сцепление частиц? Едва ли.

Глава 4. Применение фракталов

Фракталы находят все большее и большее применение в науке. Основная причина этого заключается в том, что они описывают реальный мир иногда даже лучше, чем традиционная физика или математика. Вот несколько примеров:

О
дни из наиболее мощных приложений фракталов лежат в компьютерной графике . Это фрактальное сжатие изображений. Современная физика и механика только начинают изучать поведение фрактальных объектов.

Достоинства алгоритмов фрактального сжатия изображений - очень маленький размер упакованного файла и малое время восстановления картинки. Фрактально упакованные картинки можно масштабировать без появления пикселизации (плохого качества изображения – большими квадратами). Но процесс сжатия занимает продолжительное время и иногда длится часами. Алгоритм фрактальной упаковки с потерей качества позволяет задать степень сжатия, аналогично формату jpeg. В основе алгоритма лежит поиск больших кусков изображения подобных некоторым маленьким кусочкам. И в выходной файл записывается только какой кусочек какому подобен. При сжатии обычно используют квадратную сетку (кусочки - квадраты), что приводит к небольшой угловатости при восстановлении картинки, шестиугольная сетка лишена такого недостатка.

Компанией Iterated разработан новый формат изображений "Sting", сочетающий в себе фрактальное и «волновое» (такое как в формате jpeg) сжатие без потерь. Новый формат позволяет создавать изображения с возможностью последующего высококачественного масштабирования, причем объем графических файлов составляет 15-20% от объема несжатых изображений.

В механике и физике фракталы используются благодаря уникальному свойству повторять очертания многих объектов природы. Фракталы позволяют приближать деревья, горные поверхности и трещины с более высокой точностью, чем приближения наборами отрезков или многоугольников (при том же объеме хранимых данных). Фрактальные модели, как и природные объекты, обладают "шероховатостью", и свойство это сохраняется при сколь угодно большом увеличении модели. Наличие на фракталах равномерной меры, позволяет применять интегрирование, теорию потенциала, использовать их вместо стандартных объектов в уже исследованных уравнениях.

Т
акже фрактальную геометрию используют для проектировании антенных устройств . Впервые это было применено американским инженером Натаном Коэном, который жил тогда в центре Бостона, где была запрещена установка на зданиях внешних антенн. Коэн вырезал из алюминиевой фольги фигуру в форме кривой Коха и затем наклеил ее на лист бумаги, а затем присоединил к приемнику. Оказалось, что такая антенна работает не хуже обычной. И хотя физические принципы такой антенны не изучены до сих пор, это не помешало Коэну обосновать собственную компанию и наладить их серийный выпуск. В данный момент американская фирма “Fractal Antenna System”разработала антенну нового типа. Теперь можно отказаться от использования в мобильных телефонах торчащих наружных антенн. Так называемая фрактальная антенна располагается прямо на основной плате внутри аппарата.

Также существуют множество гипотез по поводу применения фракталов – например, лимфатическая и кровеносная системы, лёгкие и многое другое тоже имеют фрактальные свойства.

Глава 5. Практические работы.

Сначала остановимся на фракталах «Ожерелье», «Победа» и «Квадрат».

Первое – «Ожерелье» (рис. 7). Инициатором данного фрактала является окружность. Эта окружность состоит из определенного числа таких же окружностей, но меньших размеров, а сама же она является одной из нескольких окружностей, представляющих собой такую же, но больших размеров. Так процесс образования бесконечен и его можно вести как в ту, так и в обратную сторону. Т.е. фигуру можно увеличивать, взяв всего одну маленькую дугу, а можно уменьшать, рассматривая построение ее из более мелких.


рис. 7.

Фрактал «Ожерелье»

Второй фрактал – это «Победа» (рис.8). Такое название он получил потому, что внешне напоминает латинскую букву “V ”, то есть “victory ”-победа. Этот фрактал состоит из определенного числа маленьких “v ”, составляющих одну большую “V ”, причем в левой половине, которой маленькие ставятся так, чтобы их левые половины составляли одну прямую, правая часть строится так же. Каждая из этих “v ” строится таким же образом и продолжается это до бесконечности.


Рис.8. Фрактал «Победа»

Третий фрактал – это «Квадрат» (рис. 9) . Каждая из его сторон состоит из одного ряда ячеек, по форме представляющих квадраты, стороны которых также представляют ряды ячеек и т.д.


Рис.9.Фрактал «Квадрат»

Фрактал был назван «Роза» (рис. 10), в силу внешнего сходства с данным цветком. Построение фрактала связано с построением ряда концентрических окружностей, радиус которых изменяется пропорционально заданному отношению (в данном случае R м / R б = ¾ = 0,75.). После чего в каждую окружность вписываются правильные шестиугольник, сторона которого равна радиусу описанной около него окружности.



Рис. 11. Фрактал «Роза * »

Далее обратимся к правильному пятиугольнику, в котором проведём его диагонали. Затем в получившемся в при пересечении соответствующих отрезков пятиугольнике снова проведём диагонали. Продолжим данный процесс до бесконечности и получим фрактал «Пентаграмма» (рис. 12).

Введём элемент творчества и наш фрактал примет вид более наглядного объекта (рис. 13).


Р
ис. 12. Фрактал «Пентаграмма».

Рис. 13. Фрактал «Пентаграмма * »


Рис. 14 фрактал «Черная дыра»

Эксперимент № 1 «Дерево»

Теперь, когда я понял что такое фрактал и как его строить, я попробовал создать свои собственные фрактальные изображения. В программе Adobe Photoshop я создал небольшую подпрограмму или action , особенность этого экшена заключается в том, что он повторяет действия, которые я проделываю, и так у меня получается фрактал.


Для начала я создал фон для нашего будущего фрактала с разрешением 600 на 600. Дальше я нарисовал на этом фоне 3 линии - основу нашего будущего фрактала.




С ледующим шагом будет запись скрипта.

продублируем слой (layer > duplicate ) и изменим тип смешивания на "Screen " .

Назовём его "fr1 ". Скопируем этот слой ("fr1 ") еще 2 раза.

Теперь надо переключиться на последний слой (fr3 ) и дважды слить его с предыдущим (Ctrl+E ). Уменьшить яркость слоя (Image > Ajustments > Brightness/Contrast , яркость установить 50% ). Опять слить с предыдущим слоем и обрезать края всего рисунка, чтобы убрать невидимые части.

Последним шагом я копировал это изображение и вставлял его с уменьшением и поворотом. Вот что получилось в конечном результате.


Заключение

Данная работа является введением в мир фракталов. Мы рассмотрели только самую малую часть того, какие бывают фракталы, на основе каких принципов они строятся.

Фрактальная графика - это не просто множество самоповторяющихся изображений, это модель структуры и принципа любого сущего. Вся наша жизнь представлена фракталами. Вся окружающая нас природа состоит из них. Нельзя не отметить широкое применение фракталов в компьютерных играх, где рельефы местности зачастую являются фрактальными изображениями на основе трёхмерных моделей комплексных множеств. Фракталы очень сильно облегчают рисование компьютерной графики, с помощью фракталов создаются множество спецэффектов, различных сказочных и невероятных картинок и т.д. Также с помощью фрактальной геометрии рисуются деревья, облака, берега и вся другая природа. Фрактальная графика необходима везде, и развитие "фрактальных технологий" - это одна из немаловажных задач на сегодняшний день.

В будущем я планирую научиться строить алгебраические фракталы, когда более подробно изучу комплексные числа. Также хочу попробовать построить свои фрактальные изображение в языке программирования Паскаль с помощью циклов.

Следует отметить применение фракталов в компьютерных технологиях, помимо просто построения красивых изображений на экране компьютера. Фракталы в компьютерных технологиях применяются в следующих областях:

1. Сжатие изображений и информации

2. Сокрытие информации на изображении, в звуке,…

3. Шифрование данных с помощью фрактальных алгоритмов

4. Создание фрактальной музыки

5. Моделирование систем

В нашей работе приведены далеко не все области человеческих знаний, где нашла свое применение теория фракталов. Хотим только сказать, что со времени возникновения теории прошло не более трети века, но за это время фракталы для многих исследователей стали внезапным ярким светом в ночи, которые озарил неведомые доселе факты и закономерности в конкретных областях данных. С помощью теории фракталов стали объяснять эволюцию галактик и развитие клетки, возникновение гор и образование облаков, движение цен на бирже и развитие общества и семьи. Может быть, в первое время данное увлечение фракталами было даже слишком бурным и попытки все объяснять с помощью теории фракталов были неоправданными. Но, без сомнения, данная теория имеет право на существование, и мы сожалеем, что в последнее время она как-то забылась и осталась уделом избранных. При подготовке данной работы нам было очень интересно находить применения ТЕОРИИ на ПРАКТИКЕ. Потому что очень часто возникает такое ощущение, что теоретические знания стоят в стороне от жизненной реальности.

Таким образом, концепция фракталов становится не только частью “чистой” науки, но и элементом общечеловеческой культуры. Фрактальная наука еще очень молода, и ей предстоит большое будущее. Красота фракталов далеко не исчерпана и еще подарит нам немало шедевров - тех, которые услаждают глаз, и тех, которые доставляют истинное наслаждение разуму.

10. Список литературы

    Божокин С.В., Паршин Д.А. Фракталы и мультифракталы. РХД 2001 г.

    Витолин Д. Применение фракталов в машинной графике. // Computerworld-Россия.-1995

    Мандельброт Б. Самоаффинные фрактальные множества, «Фракталы в физике». М.: Мир 1988 г.

    Мандельброт Б. Фрактальная геометрия природы. - М.: «Институт компьютерных исследований», 2002.

    Морозов А.Д. Введение в теорию фракталов. Н.Новгород: Изд-во Нижегород. ун-та 1999 г.

    Пайтген Х.-О., Рихтер П. Х. Красота фракталов. - М.: «Мир», 1993.

Интернет ресурсы

http://www.ghcube.com/fractals/determin.html

http://fractals.nsu.ru/fractals.chat.ru/

http://fractals.nsu.ru/animations.htm

http://www.cootey.com/fractals/index.html

http://fraktals.ucoz.ru/publ

http://sakva .narod .ru

http://rusnauka.narod.ru/lib/author/kosinov_n/12/

http://www.cnam.fr/fractals/

http://www.softlab.ntua.gr/mandel/

http://subscribe.ru/archive/job.education.maths/201005/06210524.html


Как стало ясно в последние десятилетия (в связи с развитием теории самоорганизации), самоподобие встречается в самых разных предметах и явлениях. Например, самоподобие можно наблюдать в ветках деревьев и кустарников, при делении оплодотворенной зиготы, снежинках, кристаллах льда, при развитии экономических систем, в строении горных систем, облаков.

Все перечисленные объекты и другие, подобные им по своей структуре являются фрактальными. То есть они обладают свойствами самоподобия, или масштабной инвариантности. А это значит, что некоторые фрагменты их структуры строго повторяются через определенные пространственные промежутки. Очевидно, что эти объекты могут иметь любую природу, причем их вид и форма остаются неизменными независимо от масштаба. И в природе, и в обществе на достаточно больших масштабах происходит самоповторение. Так, облако повторяет свою клочковатую структуру от 10 4 м (10 км) до 10 -4 м (0,1 мм). Ветвистость повторяется у деревьев от 10 -2 до 10 2 м. Разрушающиеся материалы, порождающие трещины, также повторяют свое самоподобие на нескольких масштабах. Снежинка, упавшая на руку, тает. В период таяния, перехода от одной фазы к другой снежинка-капля также - фрактал.

Фрактал- это объект, обладающий бесконечной сложностью, позволяющий вблизи рассмотреть не меньше деталей, чем издалека. Классический пример тому - Земля. Из космоса она выглядит как шар. Приближаясь к ней, мы обнаружим океаны, континенты, побережья и цепи гор. Позднее взору предстанут более мелкие детали: кусочек земли на поверхности горы, столь же сложный и неровный, как сама гора. Потом покажутся крошечные частички грунта, каждая из которых сама является фрактальным объектом

Фрактал является нелинейной структурой, сохраняющей самоподобие при бесконечном увеличении или уменьшении масштаба. Только на малых длинах нелинейность переходит в линейность. Это особенно ярко проявляется в математической процедуре дифференцирования.

Таким образом, можно сказать, что фракталы как модели применяются в том случае, когда реальный объект нельзя представить в виде классических моделей. А это значит, что мы имеем дело с нелинейными связями и недетерминированной природой данных. Нелинейность в мировоззренческом смысле означает многовариантность путей развития, наличие выбора из альтернатив путей и определенного темпа эволюции, а также необратимость эволюционных процессов. В математическом смысле нелинейность - это определенный вид математических уравнений (нелинейные дифференциальные уравнения), содержащих искомые величины в степенях, больше единицы или коэффициенты, зависящие от свойств среды. То есть, когда мы применяем классические модели (например, трендовые, регрессионные и т. д.), мы говорим, что будущее объекта однозначно детерминированное. И мы можем предсказать его, зная прошлое объекта (исходные данные для моделирования). А фракталы применяются в том случае, когда объект имеет несколько вариантов развития и состояние системы определяется положением, в котором она находится на данный момент. То есть мы пытаемся смоделировать хаотичное развитие.

Когда говорят о детерминированности некой системы, имеют в виду, что ее поведение характеризуется однозначной причинно-следственной связью. То есть, зная начальные условия и закон движения системы, можно точно предсказать ее будущее. Именно такое представление о движении во Вселенной характерно для классической, ньютоновской динамики. Хаос же, напротив, подразумевает беспорядочный, случайный процесс, когда ход событий нельзя ни предсказать, ни воспроизвести.

Хаос порождается собственной динамикой нелинейной системы - ее свойством экспоненциально быстро разводить сколь угодно близкие траектории. В результате форма траекторий очень сильно зависит от начальных условий. При исследовании систем, которые, на первый взгляд, развиваются хаотически, часто пользуются теорией фракталов, т.к. именно этот подход позволяет увидеть некую закономерность в возникновении "случайных" отклонений в развитии системы.

Изучение естественных фрактальных структур дает нам возможность глубже понять процессы самоорганизации и развития нелинейных систем. Мы уже выяснили, что естественные фракталы самых различных, извилистых линий встречаются повсюду вокруг нас. Это берег моря, деревья, облака, разряд молнии, структура металла, нервная или сосудистая система человека. Эти замысловатые линии и шероховатые поверхности оказались в поле зрения научных исследований, потому что природа демонстрировала нам совершенно другой уровень сложности, нежели в идеальных геометрических системах. Изучаемые структуры в пространственно-временном отношении оказались самоподобными. Они бесконечно самовоспроизводились и повторяли себя в различных масштабах длин и времени. Любой нелинейных процесс в конечном итоге приводит к развилке. Система в таком случае, в точке ветвления, выбирает тот или иной путь. Траектория развития системы будет выглядеть в виде фрактала, то есть ломаной линии, форма которой может быть описана в виде ветвистого, запутанного пути, имеющего свою логику и закономерность.

Ветвление системы можно сравнить с ветвлением дерева, где каждая ветвь соответствует трети всей системы. Ветвление позволяет линейной структуре заполнить объемное пространство или, говоря точнее: фрактальная структура согласовывает различные пространства. Фрактал может расти, заполняя окружающее пространство, так же, как растет кристалл в пересыщенном растворе. При этом характер ветвления будет связан не со случайностью, а с определенной закономерностью.

Фрактальная структура самоподобно повторяется и на других уровнях, на более высоком уровне организации жизни человека, например на уровне самоорганизации коллектива или команды. Самоорганизация сетей и форм переходит с микроуровня на макроуровень. В совокупности они представляют собой целостное единство, где по части можно судить о целом. В данной курсовой работе как пример рассматриваются фрактальные свойства социальных процессов, что говорит об универсальности теории фракталов и ее лояльности к разным областям науки.

Делается вывод, что фрактал - это способ организованного взаимодействия пространств различной размерности и природы. К вышесказанному следует добавить, что не только пространственного, но и временного. Тогда даже человеческий мозг и нейронные сети будут представлять собой фрактальную структуру.

Природа очень любит фрактальные формы. Фрактальный объект обладает расползающейся, разряженной структурой. При наблюдении таких объектов с возрастающим увеличением можно видеть, что они проявляют повторяющийся на разных уровнях рисунок. Мы уже говорили о том, что фрактальный объект может выглядеть совершенно одинаково независимо от того, наблюдаем ли мы его в метровом, миллиметровом или микронном (1:1 000 000 доли метра масштабе). Свойство симметрии фрактальных объектов проявляется в инвариантности по отношению к масштабу. Фракталы симметричны относительно центра растяжения или изменения масштаба так же, как круглые тела симметричны относительно оси вращения.

Обожаемый образ нелинейной динамики - фрактальные структуры, у которых с изменением масштаба описание строится по одному и тому же правилу. В реальной жизни реализация этого принципа возможна с небольшими вариациями. Например, в физике при переходе с уровня на уровень (от атомных процессов к ядерным, от ядерных к элементарным частицам) меняются закономерности, модели, способы описания. То же самое мы наблюдаем в биологии (уровень популяции организма, ткани, клетки и т.д.) Будущее синергетики зависит от того, в какой мере нелинейной науке удастся помочь в описании этой структурной неоднородности и разных "межуровневых" явлений. В настоящее время большинство научных дисциплин не имеет надежных фрактальных концептуальных моделей.

Сегодня разработки в рамках теории фракталов ведутся в любой частной науке - физике, социологии, психологии, лингвистике и т.п. Тогда и общество, и социальные институты, и язык, и даже мысль - фракталы.

В дискуссиях, развернувшихся в последние годы среди ученых и философов вокруг концепции фракталов, наиболее спорный вопрос состоит в следующем: можно ли говорить об универсальности фракталов, о том, что каждый объект природы содержит фрактал или проходит фрактальную стадию? Сложились две группы ученых, отвечающих на данный вопрос прямо противоположным образом. Первая группа ("радикалы", новаторы) поддерживает тезис об универсальности фракталов. Вторая группа ("консерваторы") отрицает этот тезис, но все же утверждает, что не каждый объект Природы имеет фрактал, но в каждой области Природы можно найти фрактал.

Современная наука достаточно успешно адаптировала теорию фракталов для разных областей знания. Так, в экономике теория фракталов используется при техническом анализе финансовых рынков, которые существуют в развитых странах мира уже не одну сотню лет. Впервые возможность прогнозировать дальнейшее поведение цены на акции, если известно ее направление за какой-то последний период, заметил Ч. Доу. В девяностых годах XIX в, опубликовав ряд статей, Доу заметил, что цены на акции подвержены циклическим колебаниям: после продолжительного роста следует продолжительное падение, потом опять рост и падение.

В середине XX века, когда весь научный мир увлекался только что появившейся теорией фракталов, другой известный американский финансист Р. Эллиот предложил свою теорию поведения цен на акции, которая была основана на использовании теории фракталов. Эллиот исходил из того, что геометрия фракталов имеет место быть не только в живой природе, но и в общественных процессах. К общественным процессам он относил и торговлю акциями на бирже.

Основой теории служит так называемая волновая диаграмма. Эта теория позволяет прогнозировать дальнейшее поведение тренда цены, основываясь на знании предыстории его поведения и следуя правилам развития массового психологического поведения.

Теория фракталов нашла применение и в биологии. Фрактальную природу, некоторое ее подобие, имеют многие, если не все, биологические структуры и системы растений, животных и человека: нервная система, система легких, кровеносная и лимфатическая системы и т.д. Появились данные, что развитие злокачественной опухоли так же идет по фрактальному принципу. Учитывая принцип самоафинности и конгруэнтности фрактала можно объяснить ряд трудноразрешимых проблем эволюции органического мира. Для фрактальных объектов так же характерна такая особенность, как проявление комплементарности. Комплементарность в биохимии -- взаимное соответствие в химическом строении двух макромолекул, обеспечивающее их взаимодействие -- спаривание двух нитей ДНК, соединение фермента с субстратом, антигена с антителом. Комплементарные структуры подходят друг к другу как ключ к замку (Энциклопедия Кирилла и Мефодия). Этим свойством обладают полинуклеотидные цепи ДНК.

Одни из наиболее мощных приложений фракталов лежат в компьютерной графике. Во-первых, это фрактальное сжатие изображений, и во-вторых построение ландшафтов, деревьев, растений и генерирование фрактальных текстур. При этом для сжатия, записи информации необходимо самоподобное увеличение фрактала, а для ее считывания соответственно - самоподобное увеличение.

Достоинства алгоритмов фрактального сжатия изображений - очень маленький размер упакованного файла и малое время восстановления картинки. Фрактально упакованные картинки можно масштабировать без появления пикселизации. Но процесс сжатия занимает продолжительное время и иногда длится часами. Алгоритм фрактальной упаковки с потерей качества позволяет задать степень сжатия, аналогично формату jpeg. В основе алгоритма лежит поиск больших частей изображения подобных некоторым маленьким частям. И в выходной файл записывается только информация о подобии одной части другой. При сжатии обычно используют квадратную сетку (кусочки - квадраты), что приводит к небольшой угловатости при восстановлении картинки, шестиугольная сетка лишена такого недостатка.

Среди литературных произведений находят такие, которые обладают текстуальной, структурной или семантической фрактальной природой. В текстуальных фракталах потенциально бесконечно повторяются элементы текста. К текстуальным фракталам относятся неразветвляющееся бесконечное дерево, тождественные самим себе с любой итерации ("У попа была собака…", "Притча о философе, которому снится, что он бабочка, которой снится, что она философ, которому снится…", "Ложно утверждение, что истинно утверждение, что ложно утверждение…"); неразветвляющиеся бесконечные тексты с вариациями ("У Пегги был веселый гусь…") и тексты с наращениями ("Дом, который построил Джек").

В структурных фракталах схема текста потенциально фрактальна. Тексты, обладающие такой структурой, стрятся по следующим принципам: венок сонетов (15 стихотворений), венок венков сонетов (211 стихотворений), венок венков венков сонетов (2455 стихотворений); "рассказы в рассказе" ("Книга тысячи и одной ночи", Я.Потоцкий "Рукопись, найденная в Сарагоссе"); предисловия, скрывающие авторство (У.Эко "Имя розы").


Для чтобы представить все многообразие фракталов удобно прибегнуть к их общепринятой классификации .

2.1 Геометрические фракталы

Фракталы этого класса самые наглядные. В двухмерном случае их получают с помощью некоторой ломаной (или поверхности в трехмерном случае), называемой генератором . За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры, получается геометрический фрактал.

Рис 1. Построение триадной кривой Кох.

Рассмотрим один из таких фрактальных объектов - триадную кривую Кох . Построение кривой начинается с отрезка единичной длины (рис.1) - это 0-е поколение кривой Кох. Далее каждое звено (в нулевом поколении один отрезок) заменяется на образующий элемент , обозначенный на рис.1 через n=1 . В результате такой замены получается следующее поколение кривой Кох. В 1-ом поколении - это кривая из четырех прямолинейных звеньев, каждое длиной по 1/3 . Для получения 3-го поколения проделываются те же действия - каждое звено заменяется на уменьшенный образующий элемент. Итак, для получения каждого последующего поколения, все звенья предыдущего поколения необходимо заменить уменьшенным образующим элементом. Кривая n -го поколения при любом конечном n называется предфракталом . На рис.1 представлены пять поколений кривой. При n стремящемся к бесконечности кривая Кох становится фрактальным обьектом .


Рис 2. Построение "дракона" Хартера-Хейтуэя.

Для получения другого фрактального объекта нужно изменить правила построения. Пусть образующим элементом будут два равных отрезка, соединенных под прямым углом. В нулевом поколении заменим единичный отрезок на этот образующий элемент так, чтобы угол был сверху. Можно сказать, что при такой замене происходит смещение середины звена. При построении следующих поколений выполняется правило: самое первое слева звено заменяется на образующий элемент так, чтобы середина звена смещалась влево от направления движения, а при замене следующих звеньев, направления смещения середин отрезков должны чередоваться. На рис.2 представлены несколько первых поколений и 11-е поколение кривой, построенной по вышеописанному принципу. Предельная фрактальная кривая (при n стремящемся к бесконечности) называется драконом Хартера-Хейтуэя .

В машинной графике использование геометрических фракталов необходимо при получении изображений деревьев, кустов, береговой линии. Двухмерные геометрические фракталы используются для создания объемных текстур (рисунка на поверхности обьекта) .

2.2 Алгебраические фракталы

Это самая крупная группа фракталов. Получают их с помощью нелинейных процессов в n -мерных пространствах. Наиболее изучены двухмерные процессы. Интерпретируя нелинейный итерационный процесс, как дискретную динамическую систему, можно пользоватся терминологией теории этих систем: фазовый портрет , установившийся процесс , аттрактор и т.д.

Известно, что нелинейные динамические системы обладают несолькими устойчивыми состояниями. То состояние, в котором оказалась динамическая система после некоторого числа итераций, зависит от ее начального состояния. Поэтому каждое устойчивое состояние (или как говорят - аттрактор) обладает некоторой областью начальных состояний, из которых система обязательно попадет в рассматриваемые конечные состояния. Таким образом фазовое пространство системы разбивается на области притяжения аттракторов. Если фазовым является двухмерное пространство, то окрашивая области притяжения различными цветами, можно получить цветовой фазовый портрет этой системы (итерационного процесса). Меняя алгоритм выбора цвета, можно получить сложные фрактальные картины с причудливыми многоцветными узорами. Неожиданностью для математиков стала возможность с помощью примитивных алгоритмов порождать очень сложные нетривиальные структуры.


Рис 3. Множество Мандельброта.

В качестве примера рассмотрим множество Мандельброта (см. pис.3 и рис.4). Алгоритм его построения достаточно прост и основан на простом итеративном выражении:

Z = Z [i] * Z [i] + C ,

где Z i и C - комплексные переменные. Итерации выполняются для каждой стартовой точки C прямоугольной или квадратной области - подмножестве комплексной плоскости. Итерационный процесс продолжается до тех пор, пока Z [i] не выйдет за пределы окружности радиуса 2, центр которой лежит в точке (0,0), (это означает, что аттрактор динамической системы находится в бесконечности), или после достаточно большого числа итераций (например 200-500) Z [i] сойдется к какой-нибудь точке окружности. В зависимости от количества итераций, в течении которых Z [i] оставалась внутри окружности, можно установить цвет точки C (если Z [i] остается внутри окружности в течение достаточно большого количества итераций, итерационный процесс прекращается и эта точка растра окрашивается в черный цвет).


Рис 4. Участок границы множества Мандельброта, увеличенный в 200 pаз.

Вышеописанный алгоритм дает приближение к так называемому множеству Мандельброта. Множеству Мандельброта принадлежат точки, которые в течение бесконечного числа итераций не уходят в бесконечность (точки имеющие черный цвет). Точки принадлежащие границе множества (именно там возникает сложные структуры) уходят в бесконечность за конечное число итераций, а точки лежащие за пределами множества, уходят в бесконечность через несколько итераций (белый фон).

2.3 Стохастические фракталы

Еще одним известным классом фракталов являются стохастические фракталы, которые получаются в том случае, если в итерационном процессе случайным образом менять какие-либо его параметры. При этом получаются объекты очень похожие на природные - несимметричные деревья, изрезанные береговые линии и т.д. Двумерные стохастические фракталы используются при моделировании рельефа местности и поверхности моря .

Существуют и другие классификации фракталов, например деление фракталов на детерминированные (алгебраические и геометрические) и недетерминированные (стохастические).