Электромагнитные транспортные средства и аппараты. Транспорт на магнитной подушке

2. Поезда MAGLEV: основные характеристики и перспективы эксплуатации

3. Летающие экспрессы. Отечественные и зарубежные разработки

3.1 Разработки новых видов транспорта

3.2 Высокоскоростной транспорт на магнитном подвесе

Заключение

Список литературы

Введение

Недавно знаменитый английский писатель-фантаст Артур Кларк сделал очередное предсказание. «...Мы, возможно, стоим на пороге создания космического аппарата нового типа, который сможет покидать Землю с минимальными затратами за счет преодоления гравитационного барьера, - считает он. - Тогда нынешние ракеты станут тем же, чем были воздушные шары до первой мировой войны». На чем же основано такое суждение? Ответ нужно искать в современных идеях создания транспорта на магнитной подушке.

Еще полвека назад магнитная подушка была чем-то из области фантастики. Однако сейчас ученые многих стран работают по созданию транспорта на магнитной подушке. Поезда будущего будут «парить» над землей, они как бы «подвешиваются» к рельсам, или отталкиваются от них, в зависимости от того, какая будет применена система, то есть электромагнитный или электродинамический подвес. В первом случае путь представляет собой стальные рельсы с «подвешенным» к ним экипажем. Во втором случае состав пойдет по металлическому полотну, в котором возникают электрические токи. В качестве тягового механизма в таких поездах будут использованы линейные двигатели.

Следует отметить, что поезд на магнитной подвеске начали эксплуатировать восьмидесятых годах прошлого века в Бирмингеме. Правда, после одиннадцати лет работы этот поезд был снят с линии из-за технических проблем. В настоящее время транспортная система на магнитной подушке действует в Китае, соединяя центр Шанхая с международным аэропортом Пудон. А в Японии экспериментальный поезд на магнитной подушке MLX01 в 2003 году установил абсолютный для данного вида транспорта рекорд скорости, разогнавшись до 581км/ч.

Цель данной контрольной работы – описать основные характеристики транспорта на магнитной подушке и дальнейшие перспективы использования транспорта будущего.

Реализация достижения цели достигается посредством решения следующих задач:

· дать описание теоретических предпосылок к созданию транспорта на магнитной подушке;

· дать описание технических характеристик и перспектив эксплуатации поездов на магнитной подушке;

· дать описание новейших отечественных и зарубежных разработок транспортных средств, функционирующих на основе эффекта левитации.

1. Левитация против гравитации: импульс к созданию транспорта на магнитной подушке

Буквальное значение слова «левитация» - подъем. По крайней мере, так определяется Британской энциклопедией возможность поднятия какого-либо тела (в том числе и человеческого) без контакта с чем бы то ни было. В технический обиход оно вошло сравнительно недавно, в связи с попытками создания транспорта на магнитной подушке.

Ее суть можно понять из наглядного опыта, часто демонстрируемого в школе. Берут два ферритовых колечка, представляющих собой сильные постоянные магниты, и нанизывают их на стеклянную палочку, поставленную вертикально. При этом верхний из магнитов как бы повисает в воздухе. Однако стоит убрать палочку, и магнитное кольцо перевернется и упадет. Вот почему инженерам приходится прилагать немалые усилия, чтобы стабилизировать магнитную подушку. Вот почему магнитный левитационный транспорт, над которым работают вот уже четверть века, так и не вышел за пределы полигонов.

Тем удивительнее фокус, который продемонстрировал изобретатель-исследователь Александр Кушелев. На столе он разместил керамический магнит от громкоговорителя диаметром 80 мм. Тщательно отъюстировал деревянными клинышками горизонтальность его положения. Прикрыл магнит сверху пластинкой оргстекла, на которой раскрутил самолично сделанный им волчок. И произошло необъяснимое: магнит оторвался от поверхности оргстекла и завис в воздухе.

Секунд через 40 он замедлил свое вращение, потерял устойчивость и кувыркнулся вниз. Объяснить это можно так: волчок тоже магнитный, а вращение за счет гироскопического эффекта стабилизирует его положение точно так же, как упоминавшаяся стеклянная палочка. На вопрос, нельзя ли на основе данного эффекта построить какое-либо левитирующее транспортное средство, Кушелев ответил, что как раз над этим он и размышляет.

Кроме того, магнитную левитацию можно в принципе осуществить и с помощью сверхпроводимости. Если взять сверхпроводник, пропустить через него электроток и поместить над магнитом, то он зависнет в воздухе и будет парить до тех пор, пока не отключат питание. Здесь стабилизация осуществляется как бы сама собой - любое перемещение сверхпроводника вызывает в нем вихревые токи, магнитные поля которых, точно-зеркальные по отношению к полю магнита, загоняют его на прежнее место. Естественно, это справедливо и к любому перемещению магнита (при неподвижном сверхпроводнике). Подобный способ магнитной подвески уже нашел применение в технике при создании сверхточных гироскопов для систем наведения ракет и самолетов. Более того: как выяснилось совсем недавно, использование сверхпроводимости дает уникальный побочный эффект.

Возможно ли укротить гравитацию? В 1996 г. в том убедился физик Джон Шнурер из Эниочского колледжа в Йеллоу-Спринг, штат Огайо. Когда над висящим в воздухе сверхпроводящим диском диаметром в 2,5 см он поместил маленький кусочек пластика, прикрепленный к точным весам, те показали уменьшение веса примерно на 5%. Сначала Шнурер не поверил собственным глазам. Он 12 раз провел эксперимент, прежде чем пришел к окончательному выводу: феномен повторяется регулярно. Тут он вспомнил, что еще в начале 90-х годов подобное же явление заметил наш соотечественник, специалист в области материаловедения Евгений Подклетнов, работавший в то время в Технологическом университете г. Тампере (Финляндия). Но тогда наблюдавшиеся результаты сочли ошибкой эксперимента.

Теперь же аналогичные опыты пытаются воспроизвести в Центре космических полетов имени Дж. Маршала, NASA и еще нескольких государственных лабораториях США. По словам руководителя Отделения перспективных концепций NASA Уита Брэнтли, люди так увлечены исследованиями, что порой тратят собственные деньги на покупку недостающего оборудования. К делу подключились и теоретики. Скажем, итальянец Джиованни Моданези из Национального агентства ядерной физики и физики высоких энергий полагает, что в данном случае мы имеем дело с возникновением «гравитационного экрана». А ведущий специалист Алабамского университета Нинг Ли считает, что при определенных условиях поля атомов сверхпроводника способны так экзотически взаимодействовать друг с другом, что возникает левитация.

Однако существует и другой способ создания левитации. «Одним из направлений дальнейшего поиска станет пересмотр природы тяготения - на базе электромагнитных и электростатических явлений, - полагает кандидат технических наук из подмосковного г. Лыткарино Владимир Пономарев.- Обратить внимание на электростатику заставляет хотя бы уже тот факт, что математические формулировки закона Ньютона и закона Кулона внешне весьма схожи, только в первом выражении в числителе стоят массы взаимодействующих тел, а во втором - их электрические заряды».

Причем при внимательном рассмотрении выясняется, что аналогии идут глубже внешнего сходства. Согласно общепринятым представлениям, явление гравитации основывается на взаимодействии неких квантов тяготения - гравитонов; однако до сих пор никто экспериментально не обнаружил ни их самих, ни излучаемых ими гравитационных волн. А что если гравитоны в какой-то мере тождественны элементарным электростатическим зарядам (назовем их кулонами)?

Такое предположение подталкивает вот к следующим рассуждениям. Поскольку любое тело во Вселенной имеет температуру выше абсолютного нуля, внутри него атомы испытывают тепловые колебания. А эти колебания, в соответствии с принципами электромагнитной теории Максвелла-Лоренца, неизбежно приводят к флуктуации микроскопических поляризованных зарядов. Суммируясь, те и образуют общий заряд. Таким образом, гравитационное притяжение, в принципе, может быть заменено электростатическим. Скажем, система Земля-Солнце находится в равновесии потому, что центробежная сила, бегущей по своей орбите Земли, равна силе взаимного притяжения разноименных электростатических зарядов ее и Солнца. А вот в системе Земля-Луна такое равновесие нарушено. И из-за этого Луна постепенно удаляется от нашей планеты; правда, понемногу - всего на 1,3 см в год.

Использование эффекта левитации на базе электромагнитных и электростатических явлений открывает широкие перспективы на практике. Электростатические поля надо использовать для создания летательного аппарата нового типа, полагает Пономарев. Его движение в околоземном пространстве будет обусловлено взаимодействием электростатических полей планеты и создаваемого в рабочем органе машины.

Пока в аппарате отсутствуют свободные электрические заряды необходимой величины и знака, он покоится на поверхности планеты. Но как только внутри него накапливаются ионы, получаемые ионизированием газа того же знака, что и электростатическое поле планеты, аппарат взлетит. Причем, согласно расчетам В.И.Пономарева, получается, что такая схема, как минимум, на порядок увеличит эффективность летательных аппаратов по сравнению с нынешними самолетами и ракетами. Конструкция такого летательного аппарата вполне может быть применена не только при исследовании малых планет или астероидов Солнечной системы, но и в открытом межзвездном пространстве.

Очередную попытку укрощения левитации предприняли в конце 1997 г. японские исследователи, которые работают по контракту с международной корпорацией «Мацусита». Они решили использовать для создания машины, преодолевающей силу тяжести, обыкновенный гироскоп. Их опыты подкупающе просты. Небольшой гироскоп раскручивают до 18 000 об/мин и помещают в герметичный контейнер, из которого выкачан воздух, и тот сбрасывают вниз. При падении контейнер преодолевает фиксированную дистанцию около 2 м, причем время замеряется точнейшим образом с помощью двух лазерных лучей. Когда пересекается один (старт), запускается электронный секундомер, когда же другой (финиш) - он останавливается.

Советский поезд на магнитной подушке February 21st, 2017

Сколько же всего в СССР было изобретено и спроектировано, что мы до сих пор используем эти наработки, а про некоторые только узнаем (как я вот например об этой). То ли времена были такие во всем Мире, то ли страна была такая.

Так же многие привыкли критиковать то, что в СССР планировалось все и вся, Но было и что-то в этом хорошее. В Союзе прекрасно просчитали грядущие транспортные проблемы городов-мегаполисов. И не только городов с большим населением, но и городов, которые географически сильно вытянуты, чья длина составляет сотню и более километров. Это такие города как Волгоград и Кривой Рог. По оценкам 70х годов население в 29 городах Советского Союза должно было превысить миллион, то есть стать городами-миллионерами. И для решения транспортных проблем крупных городов создавались различные институты и бюро. Уже тогда было понятно, что автомобили не очень способны решить транспортную проблему крупного города, а классическое метро дорого и медленно. Считалось, что наряду с совершенствованием традиционных видов передвижения возникла необходимость в создании качественно новых транспортных систем, которые должны быть малошумными, не загрязняющими воздух, экономичными и не создающими дополнительной нагрузки на уличную сеть.

Вот этим требованиям соответствовал последний инновационный проект, доведенный до испытаний, проект транспорта на магнитной подвеске.

Вагон TA-05 - советский поезд на магнитной подушке. Проект транспортного средства, которое должно было работать на электромагнитной системе левитации, разрабатывался в период 1985 - 1986 годов. 25 февраля 1986 года в Подмосковье был проведён первый успешный запуск необычного вагона.

«Наша лаборатория работает над созданием экспериментального пассажирского вагона, который будет двигаться, не касаясь рельсов. Для горизонтального перемещения используется принцип работы линейного трехфазного асинхронного двигателя. Двигаясь с крейсерской скоростью до 250 километров в час, это транспортное средство будет практически бесшумным. Путь его можно поднять на эстакаду над основными магистралями города. Один километр пути будет обходиться в 3—5 раз дешевле, чем метро», говорил в одном из интервью заведующий лабораторией ВНИИПИтранспрогресс А.Чемодуров.

На тот момент был построен 600 метровый скоростной участок в подмосковном Раменском и запланированы участки в Ереване и Алма-Ате.

Планировалось пускать по трассам вагоны по 65 человек, 19 метров длиной каждый и весом в 40 тонн. Крейсерская скорость же вагона равнялась 250км/ч, с перспективой 400 км/ч и выше. Также были планы пускать не отдельные вагоны, а сцепки из нескольких вагонов, то есть полноценных поездов.

Сегодня у нового вида транспорта нет падежного, заинтересованного хозяина. Пока что ни одно транспортное министерство, ни Министарство Гражданской Авиации, ни Министерство Путей Сообщения (ныне РЖД) (магнитоплан — не поезд и не самолет—вот их аргумент), не проявляет интереса к нему. Они даже не являются заказчиками. Между тем для того, чтобы эффективно использовать выделенные правительством немалые средства для перехода от экспериментов к внедрению на новом этапе развития, нужно было объединение сил, скажем, в рамках межотраслевого научно-технического комплекса.

Что особенно удивительно, но проект финансировался исключительно за счет НефтеГазСтроя. К сожалению, планам так и не удалось сбыться, землетрясение в Армении в 1988 году не позволило построить все запланированные участки. Финансирование было сокращено, а после распада СССР и вовсе прекращено. Быстрое, скоростное и свое оказалось никому не нужным.

Кто еще знает какие нибудь подробности про этот проект?

Кстати, ТП-05 успел сняться в кино — в научно-фантастической короткометражке 1987 года «С роботами не шутят», фрагмент которой вам и предлагаю к просмотру.
Смотрите на 01:03:00

источники

Больше 200 лет минуло с той поры, когда были изобретены паровозы. С тех пор железнодорожный транспорт стал самым востребованным для перевозки пассажиров и грузов. Однако ученые активно трудились над усовершенствованием данного способа перемещения. В результате был создан маглев или поезд на магнитных подушках.

Идея появилась в начале двадцатого века. Но реализовать ее в то время и в тех условиях не удалось. И лишь в конце 60-х – начале 70-х годов в ФРГ собрали магнитную трассу, где и запустили транспортное средство нового поколения. Тогда он двигался со скоростью максимум 90 км/ч и мог вместить только 4 пассажира. В 1979 году поезд на магнитных подушках модернизировали, и он смог перевезти 68 пассажиров, проезжая 75 километров в час. А в то же время в Японии сконструировали иную вариацию маглева. Он разгонялся до 517 км/ч.

Сегодня стремительность поездов на магнитных подушках может составить реальную конкуренцию самолетам. Магнитоплан мог бы серьезно соперничать с воздушными авиаперевозчиками. Единственное препятствие в том, что скользить по обычным железнодорожным путям маглевы не способны. Они требуют особых магистралей. Кроме того, считается, что необходимое поездам на воздушной подушке магнитное поле может оказать неблагоприятное воздействие на здоровее человека.

Магнитоплан не движется по рельсам, он летит в прямом смысле этого слова. На небольшой высоте (15 см) от поверхности магнитной трассы. Поднимается он над треком за счет действия электромагнитов. Это объясняет и невероятную скорость.

Полотно для маглева выглядит как череда бетонных плит. Магниты расположены под этой поверхностью. Они искусственно создают магнитное поле, по которому «едет» поезд. Во время движения нет трения, поэтому для торможения используется аэродинамическое сопротивление.

Если на простом языке объяснять принцип действия, то получится так. Когда пару магнитов приближают друг к другу одинаковыми полюсами, они как бы отталкиваются один от другого. Получается магнитная подушка. А при приближении противоположных полюсов магниты притягиваются, и поезд останавливается. Такой элементарный принцип и положен в основу работы магнитоплана, который движется по воздуху на небольшой высоте.

Сегодня применяются 3 технологии подвеса маглевов.

1. Электродинамическая подвеска, EDS.

Иначе это называется на сверхпроводящих магнитах, то есть на вариациях с обмоткой из сверхпроводящего материала. Такая обмотка обладает нулевым омическим сопротивлением. И если она замкнута накоротко, то электрический ток в ней сохраняется бесконечно долго.

2. Электромагнитная подвеска, EMS (или на электромагнитах).

3. На постоянных магнитах. Сегодня это наименее затратная технология. Процесс передвижения обеспечивается линейным двигателем, то есть электродвигателем, где один элемент магнитной системы разомкнут и имеет развёрнутую обмотку, создающую бегущее магнитное поле, а второй сделан в виде направляющей, отвечающей за линейное перемещение подвижной части двигателя.

Многие задумываются: безопасный ли это поезд, он не упадет? Разумеется, не упадет. Нельзя сказать, что маглев на дороге ничего не удерживает. Он опирается на трек посредством особенных “клешней”, расположенных снизу поезда, в которых и поставлены электромагниты, поднимающие поезд в воздух. Там же расположены и те магниты, которые удерживают магнитоплан на треке.

Те, кто прокатился на маглеве, утверждают, что ничего вдохновляющего не ощутили. Поезд идет настолько тихо, что умопомрачительная скорость не чувствуется. Объекты за окном пролетают быстро, но расположены очень далеко от трека. Разгоняется магнитоплан плавно, так что перегрузок тоже не ощущается. Интересен и необычен только момент, когда поезд поднимается.

Итак, основные преимущества маглева:

  • максимально возможная скорость движения, которая достигается на наземном (неспортивном) транспорте,
  • требуется небольшое количество электроэнергии,
  • из-за отсутствия трения малозатратны в обслуживании,
  • тихое передвижение.

Недостатки:

  • необходимость больших финансовых затрат при строительстве и обслуживании трека,
  • электромагнитное поле способно нанести вред здоровью тем, кто работает на этих линиях и живет в окрестных районах,
  • для постоянного контроля расстояния между поездом и треком необходимы быстродействующие системы управления и сверхпрочные приборы,
  • требуются сложная схема путей и дорожная инфраструктура.

Магнитоплан или Маглев (от англ. magnetic levitation) — это поезд на магнитном подвесе, движимый и управляемый магнитными силами. Такой состав, в отличие от традиционных поездов, в процессе движения не касается поверхности рельса. Так как между поездом и поверхностью движения существует зазор, трение исключается, и единственной тормозящей силой является сила аэродинамического сопротивления.

Скорость, достижимая маглев, сравнима со скоростью самолета и позволяет составить конкуренцию воздушным сообщениям на малых (для авиации) расстояниях (до 1000 км). Хотя сама идея такого транспорта не нова, экономические и технические ограничения не позволили ей развернуться в полной мере: для публичного использования технология воплощалась всего несколько раз. В настоящее время, Маглев не может использовать существующую транспортную инфраструктуру, хотя есть проекты с расположением элементов магнитной дороги между рельсов обычной железной дороги или под полотном автотрассы.

На данный момент существует 3 основных технологии магнитного подвеса поездов:

1. На сверхпроводящих магнитах (электродинамическая подвеска, EDS).

Созданная в Германии “железная дорога будущего” и прежде вызывала протесты жителей Шанхая. Но на этот раз власти, напуганные демонстрациями, грозящими вылиться в крупные волнения, пообещали разобраться с поездами. Чтобы вовремя пресекать демонстрации, чиновники даже развесили видеокамеры в тех местах, где чаще всего происходят массовые протесты. Китайская толпа очень организованна и мобильна, она может в считанные секунды собраться и превратиться в демонстрацию с лозунгами.

Это крупнейшие народные выступления в Шанхае со времен антияпонских маршей в 2005 году. Это уже не первый протест, вызванный озабоченностью китайцев ухудшающейся экологией. Минувшим летом многотысячные толпы демонстрантов заставили правительство отложить строительство химического комплекса.

Несомненно, Шанхайский Маглев - одна из достопримечательностей Шанхая, да и всего Китая. Это первая в мире коммерческая магнитная железная дорога была введена в эксплуатацию в январе 20о4 года.

Сейчас эта 30-километровая линия соединяет со станцией метро Лун"ян Лу в районе Шанхая. Это расстояние на поезде на магнитной подушке преодолевается меньше, чем за 8 минут. Для сравнения, если ехать на , то понадобится 40 минут.

На таком поезде нужно проехать как минимум два раза - один раз наблюдая за указателем скорости, когда он достигнет максимума, а другой раз - любуясь видом из окна 🙂

Шанхайский Маглев построен по немецкой технологии. Активные разработки в этой области ведутся в основном в Японии и Германии.

Магнитная подушка. Как это работает?

Слово Маглев - сокращенно от магнитная левитация (magnetig levitation, англ.), то есть поезд как бы левитирует над полотном дороги под действием мощного электромагнитного поля.

К низу каждого вагона к стальному обхвату (4) прикреплены управляемые электронным способом электромагниты (1). Также магниты расположены в нижней части специального рельса (2). При взаимодействии магнитов поезд зависает над рельсом в одном сантиметре. Есть также магниты, отвечающие за боковое выравнивание (3). Обмотка, уложенная вдоль пути, создает магнитное поле, приводящее поезд в движение.

Поезд едет без машиниста. Управление осуществляется из центра управления с помощью компьютеров. Электрический ток подается из центра управления только на тот участок, по которому движется в данный момент поезд. Для торможения магнитное поле меняет свой вектор.

Достоинства и недостатки

"Если кто-нибудь из вас решит построить башню, то разве он не сядет сначала и не подсчитает все затраты, чтобы посмотреть, хватит ли ему средств, чтобы закончить её?" ( , Луки 14 глава 28 стих)

В этих словах заключена одна из причин, почему таких поездов не понаделали всюду.

Дорого обходится строительство и обслуживание специальной колеи. Например, строительство Шанхайского Маглева было дополнительно осложнено заболоченной местностью. Каждая опора трассы уложена на специальную бетонную подушку, упирающуюся в скальное основание. Местами такая подушка достигает 85 метров толщины! В итоге эти 30 км магнитной дороги обошлись в 10 млрд юаней.

К тому же по этой дороге уже нельзя пустить другой транспорт. Это отличает его от путей, построенных для скоростных поездов - по ним все равно могут ехать и обычные .

Теперь о приятном. Главным плюсом Маглева является, конечно, же скорость. За короткое время после старта поезд разгоняется до 430 км в час.

Сравнительно низкое потребление электроэнергии - в разы меньше, чем у автомобиля или самолета. Соответственно меньше вреда окружающей среде.

Так как сильно уменьшено трение деталей, то и затраты на эксплуатацию такого поезда меньше.

Проведенные испытания показали, что магнитное поле в поезде даже слабее, чем в обычных поездах. Значит, мощные магниты не опасны для пассажиров, в том числе с электронным стимулятором сердца.

На случай потери электропитания в поезде установлены батареи, на которых срабатывают специальные тормоза. Они создают магнитное поле с обратным вектором, и скорость поезда снижается до 10 км в час, и в конце концов поезд останавливается и опускается на рельсы.

Будущее Шанхайского Маглева

Сейчас длина маглев-пути равна 30 км. Известно о планах продлить линию до другого аэропорта Шанхая - до Хунцяо, расположенном на западе от . И дальше продлить дорогу на юго-запад до Ханчжоу. В итоге длина пути составила бы 175 км. Но пока проект заморожен до 2014 года. С 2010 года Шанхай и Ханчжоу соединила высокоскоростная железная дорога. Будут ли реализованы планы по продлению Маглева - покажет время.